1. Convert each of the following equations to the requested form.
a) $\frac{x+8}{4}=\frac{y-9}{-2}=\frac{5-z}{-1}$ to vector form.
b) $\vec{r}=(2,-1)+t(-2,7)$ to scalar form.
c) $\left\{\begin{array}{l}x=-3+4 t \\ y=-t \\ z=2-2 t\end{array}\right.$ to symmetric form.
d) $(x, y, z)=(-1,4,9)+k(5,-2,2)$ to parametric form.
e) $3 x-5 y-15=0$ to vector form.
2. Find a normal vector for a line which is:
a) parallel to $5 x-6 y-15=0$.
b) perpendicular to $(x, y)=(-1,0)+k(3,-8)$
3. Find the symmetric equation of the line through $P(-3,5)$ with slope $-9 / 4$.
4. Find the scalar equation of the line with direction vector $\vec{d}=(-3,1)$ passing through $P(-4,7)$.
5. Find the requested version of the line described in each of the following:
a) Vector equation of the line parallel to $4 x-3 y+12=0$ and passing through the y intercept of $\left\{\begin{array}{l}x=-4+2 k \\ y=3-5 k\end{array}\right.$.
b) Scalar equation of the line perpendicular to $2 x-3 y+8=0$ passing through $P(2,-3)$.
c) Parametric equations of the line through $A(-3,2,5)$ and is perpendicular to both ℓ_{1} and ℓ_{2} where

$$
\ell_{1}: \frac{x-4}{3}=y-2=\frac{z-3}{-2} \quad \ell_{2}:(x, y, z)=(-1,1,5)+k(-1,-2,3)
$$

6. Find the intersection of the following lines. Then classify them as an inconsistent or consistent, dependent or independent system.
a) $\begin{aligned} & \ell_{1}:(x, y)=(-1,3)+t(-2,4) \\ & \ell_{2}: 2 x+y-1=0\end{aligned}$
b) $\ell_{1}:(x, y, z)=(-1,3,5)+t(1,-2,6)$ and $\ell_{2}:\left\{\begin{array}{l}x=-13+3 k \\ y=-8+k \\ z=-1+3 k\end{array}\right.$
c) $\begin{aligned} & \ell_{1}: \frac{x-2}{1}=\frac{y-1}{-1}=\frac{z}{1} \\ & \ell_{2}: \frac{x-3}{2}=\frac{y}{3}=\frac{1-z}{1}\end{aligned}$
d) $\ell_{1}:\left\{\begin{array}{l}x=1+t \\ y=1+2 t \\ z=1-3 t\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{c}x=3-2 u \\ y=5-4 u \\ z=-5+6 u\end{array}\right.$
7. Show that the lines $\vec{r}=(4,7,-1)+t(4,8,-4)$ and $\vec{r}=(1,5,4)+u(-1,2,3)$ intersect at right angles and find the point of intersection.
8. Find the distance between:
a) The point $(3,7)$ and the line $2 x-3 y=7$
b) lines: $\begin{aligned} & \ell_{1}: 5 x-2 y+25=0 \\ & \ell_{2}: 5 x-2 y-5=0\end{aligned}$
c) the point $A(-6,5,-3)$ and the line $(x, y, z)=(6,1,3)+t(5,-3,3)$

e) lines: $\ell_{1}: \frac{x-1}{2}=\frac{y+4}{1}, z=1$ and $\ell_{2}:\left\{\begin{array}{l}x=4 t \\ y=1+2 t \\ z=6\end{array}\right.$
9. Create a system of two equations in 3-space so that they intersect at the point $(5,5,5)$ and are at an angle of 55° degrees to each other. Justify.

SOLUTIONS:

1. a) $(x, y, z)=(-8,9,5)+k(4,-2,1), k \varepsilon R$
2. a) $(x, y)=(0,-7)+k(3,4)$
b) $7 x+2 y-12=0$
b) $3 x+2 y=0$
c) $\frac{x+3}{4}=\frac{y}{-1}=\frac{z-2}{-2}$
d) $x=-1+5 k, y=4-2 k, z=9+2 k$
e) $(x, y, z)=(0 .-3)+k(5,3), k \varepsilon R$

2. a) $(5,-6)$ b) $(3,-8)$	6. a) $(t, 1-2 t), t \in \mathfrak{R}$, b) $\{$ system is inconsistent $\}$, c) $\{(3,0,1)\}$, d) $\{(a, 2 a-1,4-3 a)\}$
3. $\frac{x+3}{4}=\frac{y-5}{-9}$	$7 .\{(2,3,1)\}$
4. $x+3 y-17=0$	$\begin{array}{l}\text { 8. a) }\{6.10 \text { units }\}, \text { b) }\{5.57 \text { units }\}, \\ \text { c) }\{2.76 \text { units }\}, \text { d) }\{0.39 \text { units }\}, ~ e) ~\end{array} 7.01$ units $\}$

