Challenge Set \#2

1. If two forces of equal magnitude act at 60° to each other and their resultant has magnitude of 30 N , find the magnitude of the equal forces.
\{17.3 N \}
2. Calculate the work done if a force of 100 N at an angle of 40 degrees with the horizontal moves an object horizontally 40 m and then up a ramp 10 m long inclined at 15 degrees to the horizontal. \{3970.5 J\}
3. The parallelogram OACB has one vertex, O , at the origin and two non-parallel sides determined by $\overrightarrow{O A}=(3,-1)$ and $\overrightarrow{O B}=(2,2)$. Calculate the angle between the diagonals.
$\left\{83^{\circ}\right.$ and $\left.97^{\circ}\right\}$
4. Find a vector perpendicular to $\vec{u}=(-2,5,4)$. Check that it is correct by using the dot product.
5. Determine the coordinates of a parallelogram in 3-space so that the interior angles are as close to 40° and 140° as possible.
6. If \vec{a} and \vec{b} are perpendicular, show that $|\vec{a}|^{2}+|\vec{b}|^{2}=|\vec{a}+\vec{b}|^{2}$. What is the usual name for this result?
7. If \vec{a} and \vec{b} are not perpendicular and $\vec{c}=\vec{a}-\vec{b}$, express $|\vec{c}|^{2}$ in terms of \vec{a} and \vec{b}. What is the usual name for this result?
8. Under what conditions is $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$?
9. Prove that $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$. When does the equality hold?
10. Find a unit vector that is parallel to the $x y$-plane and perpendicular to the vector $4 \hat{i}-3 \widehat{j}+\widehat{k}$.
11. The vectors $\vec{a}=(1,3,-2)$ and $\vec{b}=(k, 2,1)$ have an angle of 60° when placed tail to tail. Solve for k.
12. The equilibrant of the following four forces is 45.6 N at $E 30^{\circ} S$. Determine the missing force

$$
\begin{aligned}
& 65 \mathrm{~N} \text { at } S 35^{\circ} E \\
& 50 \mathrm{~N} \text { at } E 15^{\circ} \mathrm{N} \\
& 110 \mathrm{~N} \text { at } N 55^{\circ} W
\end{aligned}
$$

