Challenge Set \#4

1) Find the point $Q \in \ell$ so that $|\overrightarrow{P Q}|$ is a minimum given that $P(6,3,-1) \notin \ell$ and $\ell:(x, y, z)=(3,-2,0)+t(4,3,-2)$. What techniques can you use to verify your answer?
2) One line passes through points $A(-2,2,-6)$ and $B(-5,-1,-10)$ while a second line passes through points $C(3,-4,-5)$ and $D(3,-3,-3)$. Determine the shortest distance between these lines and determine the locations on the lines where this shortest distance occurs.
3) Given the lines $\frac{x-1}{2}=\frac{y}{4}=\frac{z+1}{3}$ and $\frac{x}{2}=\frac{y+1}{1}=\frac{z+2}{-3}$, use a variety of techniques to show that they are either skew or that they intersect.

Challenge Set \#4

1) Find the point $Q \in \ell$ so that $|\overrightarrow{P Q}|$ is a minimum given that $P(6,3,-1) \notin \ell$ and $\ell:(x, y, z)=(3,-2,0)+t(4,3,-2)$. What techniques can you use to verify your answer?
2) One line passes through points $A(-2,2,-6)$ and $B(-5,-1,-10)$ while a second line passes through points $C(3,-4,-5)$ and $D(3,-3,-3)$. Determine the shortest distance between these lines and determine the locations on the lines where this shortest distance occurs.
3) Given the lines $\frac{x-1}{2}=\frac{y}{4}=\frac{z+1}{3}$ and $\frac{x}{2}=\frac{y+1}{1}=\frac{z+2}{-3}$, use a variety of techniques to show that they are either skew or that they intersect.

Challenge Set \#4

1) Find the point $Q \in \ell$ so that $|\overrightarrow{P Q}|$ is a minimum given that $P(6,3,-1) \notin \ell$ and $\ell:(x, y, z)=(3,-2,0)+t(4,3,-2)$. What techniques can you use to verify your answer?
2) One line passes through points $A(-2,2,-6)$ and $B(-5,-1,-10)$ while a second line passes through points $C(3,-4,-5)$ and $D(3,-3,-3)$. Determine the shortest distance between these lines and determine the locations on the lines where this shortest distance occurs.
3) Given the lines $\frac{x-1}{2}=\frac{y}{4}=\frac{z+1}{3}$ and $\frac{x}{2}=\frac{y+1}{1}=\frac{z+2}{-3}$, use a variety of techniques to show that they are either skew or that they intersect.
