1. Consider the situation indicated in the diagram involving a car C travelling at $110 \mathrm{~km} / \mathrm{h}$, a bus B travelling at $95 \mathrm{~km} / \mathrm{h}$ and a limousine L travelling at $125 \mathrm{~km} / \mathrm{h}$.

a) Find the velocity of the limousine relative to the bus.
b) Find the velocity of the bus relative to the car.
2. The wind is blowing from $S 80^{\circ} E$ at a wind speed of $85 \mathrm{~km} / \mathrm{h}$. A plane's actual groundspeed is $480 \mathrm{~km} / \mathrm{h}$ at a track of $S 16^{\circ} \mathrm{W}$. Determine the airspeed and heading the pilot should take?
3. A ship is travelling at 22 knots in the direction $N 15^{\circ} \mathrm{W}$. A submarine 12 nautical miles due north of the ship is travelling at 13 knots at $S 35^{\circ} \mathrm{W}$. Find the velocity of the ship relative to the submarine? Does the ship pass in front of or behind the submarine?
4. Given $\vec{u}=(3,1)$ and $\vec{v}=(-2,-4)$, find the $\operatorname{Pr} \operatorname{oj}(\vec{u}$ onto $\vec{v})$ as an algebraic vector.
5. Given vectors \vec{u} and \vec{v} as shown, find:
a) $\vec{u} \times \vec{v}$ b) $\operatorname{Pr} o j(\vec{u}$ onto $\vec{v}) \quad$ (in terms of \vec{v})
c) $\operatorname{Pr} \operatorname{oj}(\vec{v}$ onto $\vec{u})$ (in terms of $\hat{u})$ d) $(3 \vec{u}+\vec{v}) \times(2 \vec{u}-\vec{v})$

6. Given $\vec{x}=2 \hat{i}-\hat{j}+5 \hat{k}, \quad \vec{y}=(-1,2,2), \quad \vec{z}=(3,-2,4) \quad A(-1,3,4), \quad B(-3,2,7)$

Find: a) $\vec{z} \times \vec{x} \quad$ b) $(3 \vec{x}-2 \vec{y}) \times(2 \vec{x}+\vec{y})$
7. Find the work done if a force of 35 N in the direction of $\vec{r}=(4,-5,8)$ moves an object from $\mathrm{G}(1,7,-3)$ to $\mathrm{H}(5,3,-2)$.
8. If $\vec{x}=(3 t,-5,1)$ and $\vec{y}=(t+2, t+3,5)$, find all value(s) for t if $\vec{x} \times \vec{y}=(-29,-12,27)$.
9. Given $\vec{u}=(3,1,4)$ and $\vec{v}=(-2,-4,1)$, find the $\operatorname{Pr} o j(\vec{u}$ onto $\vec{v})$.
10. Find a unit vector \perp to both $\vec{a}=(1,1,2)$ and $\vec{b}=(2,1,-2)$.
11. If $\overrightarrow{O A}, \overrightarrow{O B}$, and $\overrightarrow{O C}$ are three edges of a parallelepiped where O is $(0,0,0)$, A is $(2,4,-3)$, B is $(4,6,2)$, and C is $(5,0,-2)$, find the volume of the parallelepiped.
12. Determine the magnitude of the moment of the force about the fixed point A for each of the following:
a)

b)

Answers: 1 . a) $220 \mathrm{~km} / \mathrm{h} \mathrm{W}$ b) $15 \mathrm{~km} / \mathrm{h} 2.478 .63 \mathrm{~km} / \mathrm{h} S 5.9^{\circ} \mathrm{W} 3.31 .94$ knots $N 3.2^{\circ} E$, ship passes behind 4. $(1,2) 5$. a) $131 \hat{e}$ in b) $0.54 \vec{v}$ c) $13 \hat{u}$ d) $655.5 \hat{e}$ out 6. a) $(-6,-7,1)$ b) $(-84,-63,21) 7.150 .4 \mathrm{~J} \quad 8 . \mathrm{t}=1$ 9. $\left(\frac{12}{21}, \frac{24}{21}, \frac{-6}{21}\right) \quad 10 .\left(\frac{-4}{\sqrt{53}}, \frac{6}{\sqrt{53}}, \frac{-1}{\sqrt{53}}\right) 11, \mathrm{~V}=138 \mathrm{u}^{3}$ 12. 704.2 Joules and 769.1 Joules

