Challenge Set #3

- 1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_1: (x, y, z) = (2, -4, 3) + t(3, 5, 1)$ and $\ell_2: (x, y, z) = (0, -6, 5) + k(5, 1, 0)$. $\{x 5y + 22z 114 = 0\}$
- 2) Let $\ell_1: (x, y, z) = (3, 4, 1) + t(2, 1, 2)$ and $\ell_2: (x, y, z) = (4, 17, -3) + k(4, 2, -1)$ be two lines. Find the equation of the plane that contains ℓ_1 and the point P_2 on ℓ_2 that is a minimum distance from ℓ_1 .

3) Determine the plane that contains both lines
$$\ell_1 : (x, y, z) = (-1,3,5) + t(1,-2,6)$$
 and $\ell_2 : (x, y, z) = (-13, -8, -1) + k(3, 1, 3)$, if possible.

Challenge Set #3

- 1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_1: (x, y, z) = (2, -4, 3) + t(3, 5, 1)$ and $\ell_2: (x, y, z) = (0, -6, 5) + k(5, 1, 0)$. $\{x 5y + 22z 114 = 0\}$
- 2) Let $\ell_1: (x, y, z) = (3, 4, 1) + t(2, 1, 2)$ and $\ell_2: (x, y, z) = (4, 17, -3) + k(4, 2, -1)$ be two lines. Find the equation of the plane that contains ℓ_1 and the point P_2 on ℓ_2 that is a minimum distance from ℓ_1 .
- 3) Determine the plane that contains both lines $\ell_1 : (x, y, z) = (-1,3,5) + t(1,-2,6)$ and $\ell_2 : (x, y, z) = (-13,-8,-1) + k(3,1,3)$, if possible.

Challenge Set #3

- 1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_1: (x, y, z) = (2, -4, 3) + t(3, 5, 1)$ and $\ell_2: (x, y, z) = (0, -6, 5) + k(5, 1, 0)$. {x 5y + 22z 114 = 0}
- 2) Let $\ell_1: (x, y, z) = (3, 4, 1) + t(2, 1, 2)$ and $\ell_2: (x, y, z) = (4, 17, -3) + k(4, 2, -1)$ be two lines. Find the equation of the plane that contains ℓ_1 and the point P_2 on ℓ_2 that is a minimum distance from ℓ_1 .
 - $\{4x+2y-5z-15=0\}$

 $\{4x+2y-5z-15=0\}$

 $\{4x+2y-5z-15=0\}$

3) Determine the plane that contains both lines $\ell_1 : (x, y, z) = (-1,3,5) + t(1,-2,6)$ and $\ell_2 : (x, y, z) = (-13,-8,-1) + k(3,1,3)$, if possible.

Challenge Set #3

- 1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_1: (x, y, z) = (2, -4, 3) + t(3, 5, 1)$ and $\ell_2: (x, y, z) = (0, -6, 5) + k(5, 1, 0)$.
- 2) Let $\ell_1: (x, y, z) = (3, 4, 1) + t(2, 1, 2)$ and $\ell_2: (x, y, z) = (4, 17, -3) + k(4, 2, -1)$ be two lines. Find the equation of the plane that contains ℓ_1 and the point P_2 on ℓ_2 that is a minimum distance from ℓ_1 .

$$\{4x+2y-5z-15=0\}$$

 $\{x-5y+22z-114=0\}$

3) Determine the plane that contains both lines $\ell_1 : (x, y, z) = (-1,3,5) + t(1,-2,6)$ and $\ell_2 : (x, y, z) = (-13,-8,-1) + k(3,1,3)$, if possible.