Challenge Set \#3

1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_{1}:(x, y, z)=(2,-4,3)+t(3,5,1)$ and $\ell_{2}:(x, y, z)=(0,-6,5)+k(5,1,0)$.

$$
\{x-5 y+22 z-114=0\}
$$

2) Let $\ell_{1}:(x, y, z)=(3,4,1)+t(2,1,2)$ and $\ell_{2}:(x, y, z)=(4,17,-3)+k(4,2,-1)$ be two lines. Find the equation of the plane that contains ℓ_{1} and the point P_{2} on ℓ_{2} that is a minimum distance from ℓ_{1}.

$$
\{4 x+2 y-5 z-15=0\}
$$

3) Determine the plane that contains both lines $\ell_{1}:(x, y, z)=(-1,3,5)+t(1,-2,6)$ and $\ell_{2}:(x, y, z)=(-13,-8,-1)+k(3,1,3)$, if possible.

Challenge Set \#3

1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_{1}:(x, y, z)=(2,-4,3)+t(3,5,1)$ and $\ell_{2}:(x, y, z)=(0,-6,5)+k(5,1,0) . \quad\{x-5 y+22 z-114=0\}$
2) Let $\ell_{1}:(x, y, z)=(3,4,1)+t(2,1,2)$ and $\ell_{2}:(x, y, z)=(4,17,-3)+k(4,2,-1)$ be two lines. Find the equation of the plane that contains ℓ_{1} and the point P_{2} on ℓ_{2} that is a minimum distance from ℓ_{1}.

$$
\{4 x+2 y-5 z-15=0\}
$$

3) Determine the plane that contains both lines $\ell_{1}:(x, y, z)=(-1,3,5)+t(1,-2,6)$ and $\ell_{2}:(x, y, z)=(-13,-8,-1)+k(3,1,3)$, if possible.

Challenge Set \#3

1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_{1}:(x, y, z)=(2,-4,3)+t(3,5,1)$ and $\ell_{2}:(x, y, z)=(0,-6,5)+k(5,1,0)$.

$$
\{x-5 y+22 z-114=0\}
$$

2) Let $\ell_{1}:(x, y, z)=(3,4,1)+t(2,1,2)$ and $\ell_{2}:(x, y, z)=(4,17,-3)+k(4,2,-1)$ be two lines. Find the equation of the plane that contains ℓ_{1} and the point P_{2} on ℓ_{2} that is a minimum distance from ℓ_{1}.

$$
\{4 x+2 y-5 z-15=0\}
$$

3) Determine the plane that contains both lines $\ell_{1}:(x, y, z)=(-1,3,5)+t(1,-2,6)$ and $\ell_{2}:(x, y, z)=(-13,-8,-1)+k(3,1,3)$, if possible.

Challenge Set \#3

1) Find the equation of the plane parallel to and equidistant from, the skew lines $\ell_{1}:(x, y, z)=(2,-4,3)+t(3,5,1)$ and $\ell_{2}:(x, y, z)=(0,-6,5)+k(5,1,0) . \quad\{x-5 y+22 z-114=0\}$
2) Let $\ell_{1}:(x, y, z)=(3,4,1)+t(2,1,2)$ and $\ell_{2}:(x, y, z)=(4,17,-3)+k(4,2,-1)$ be two lines. Find the equation of the plane that contains ℓ_{1} and the point P_{2} on ℓ_{2} that is a minimum distance from ℓ_{1}.

$$
\{4 x+2 y-5 z-15=0\}
$$

3) Determine the plane that contains both lines $\ell_{1}:(x, y, z)=(-1,3,5)+t(1,-2,6)$ and $\ell_{2}:(x, y, z)=(-13,-8,-1)+k(3,1,3)$, if possible.
