The Dot Product and Applications

There are situations in physics where vectors can be combined in ways other than addition. The scalar quantity work is defined as the displacement travelled multiplied by the magnitude of the applied force in the direction of motion. The units are Newton-metres also known as joules (J).

Ex. Aaron is pulling his sled up a hill with a force of 120 N at an angle of 20° to the surface of the hill. The hill is 100 m long. Find the work that Aaron performs.

We need the magnitude of the component of the force along the surface of the hill: AC.

$$
\begin{aligned}
\cos 20^{\circ} & =\frac{A C}{A B} \\
A C & =A B \cos 20^{\circ} \\
& =120 \cos 20^{\circ}
\end{aligned}
$$

From the definition of work,

$$
\begin{aligned}
\text { work } & =|\vec{s}|(A C) \\
& =(100)\left(120 \cos 20^{\circ}\right) \\
& \doteq 11276 \mathrm{~J}
\end{aligned}
$$

The work done by Aaron in pulling his sled up the hill is 11276 J .

This new product is called the dot product.

For non-zero vectors \vec{a} and \vec{b}, we define the dot product as:

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

Applications of the Dot Product

Definition: The dot product of two vectors \vec{u} and \vec{v} is $\vec{u} \cdot \vec{v}=|\vec{u} \| \vec{v}| \cos \theta$ where θ is the angle between \vec{u} and \vec{v}.

This is a scalar quantity and is sometimes called the scalar product.
Of course this works in three space as well.

Properties of the Dot Product

$\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
$a(\vec{u} \cdot \vec{v})=(a \vec{u}) \cdot \vec{v}=\vec{u} \cdot(a \vec{v}), a \in \mathfrak{R}$
$\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$
$\vec{u} \cdot \vec{u}=|\vec{u}|^{2}$

Aside:

$$
\begin{aligned}
& \hat{i} \cdot \hat{i}=1 \\
& \hat{j} \cdot \hat{j}=1 \\
& \hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{i}=0
\end{aligned}
$$

Dot Product in Algebraic Form in R^{2}

Given $\vec{u}=\left(u_{1}, u_{2}\right) \vec{v}=\left(v_{1}, v_{2}\right)$

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=\left(u_{1}, u_{2}\right) \cdot\left(v_{1}, v_{2}\right) \\
& =\left(u_{1} \hat{i}+u_{2} \hat{j}\right) \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}\right) \\
& =u_{1} \hat{i} \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}\right)+u_{2} \hat{j} \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}\right) \\
& =u_{1} v_{1} \hat{i} \cdot \hat{i}+u_{1} v_{2} \hat{i} \cdot \hat{j}+u_{2} v_{1} \hat{j} \cdot \hat{i}+u_{2} v_{2} \hat{j} \cdot \hat{j} \\
& =u_{1} v_{1}+u_{2} v_{2}
\end{aligned}
$$

Dot Product in Algebraic Form in R^{3}

Given $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right) \quad \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =\left(u_{1}, u_{2}, u_{3}\right) \cdot\left(v_{1}, v_{2}, v_{3}\right) \\
& =\left(u_{1} \hat{i}+u_{2} \hat{j}+u_{3} \hat{k}\right) \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}+v_{3} \hat{k}\right) \\
& =u_{1} \hat{i} \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}+v_{3} \hat{k}\right)+u_{2} \hat{j} \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}+v_{3} \hat{k}\right)+u_{3} \hat{k} \cdot\left(v_{1} \hat{i}+v_{2} \hat{j}+v_{3} \hat{k}\right) \\
& =u_{1} v_{1} \hat{i} \cdot \hat{i}+u_{1} v_{2} \hat{i} \cdot \hat{j}+u_{1} v_{3} \hat{i} \cdot \hat{k}+u_{2} v_{1} \hat{j} \cdot \hat{i}+u_{2} v_{2} \hat{j} \cdot \hat{j}+u_{2} v_{3} \hat{j} \cdot \hat{k}+u_{3} v_{1} \hat{k} \cdot \hat{i}+u_{3} v_{2} \hat{k} \cdot \hat{j}+u_{3} v_{3} \hat{k} \cdot \hat{k} \\
& =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
\end{aligned}
$$

Theorem: Two non-zero vectors are perpendicular if and only if $\vec{u} \cdot \vec{v}=0$.

Applications of the Dot Product

\#1 Finding the angle between two vectors in component form.
Find the angle between $\vec{u}=(-1,5,2) \quad \vec{v}=(2,-3,1)$
\#2 Finding a vector perpendicular to a given vector.
Ex. Find a vector perpendicular to $\vec{w}=(-4,7)$
Ex. Find a vector perpendicular to $\vec{w}=(-4,7,3)$
\#3 Finding the dot product of the sum or difference of the same two vectors.
Ex. Given $\vec{u}=(-1,5) \vec{v}=(2,-3)$ Find $(3 \vec{u}-\vec{v}) \cdot(2 \vec{u}+\vec{v})$
\#4 Finding the work done.
Work $=$ Displacement \bullet Force along the displacement
\uparrow Work $=|\vec{f} \| \vec{d}| \cos \theta$
scalar measured in Joules

Homework on dot product and work:

1. Given vectors \vec{u} and \vec{v} as shown, find: $\vec{u} \cdot \vec{v}$
a) $\vec{v} \cdot \vec{u}$
b) $(2 \vec{u}-\vec{v}) \cdot(3 \vec{u}+3 \vec{v})$
\{144.2\}
b) $(2 \vec{u}-\vec{v}) \cdot(3 \vec{u}+3 \vec{v})\{165.5\}$

$$
|\vec{u}|=10,|\vec{v}|=17
$$

2. Given $\begin{aligned} & \vec{y}=2 \hat{i}+2 \hat{j}, \quad \vec{x}=(-1,4), \quad \vec{z}=(3,-2) \\ & A(-1,-3), \quad B(-3,-2)\end{aligned}$

Find: a) $\vec{y} \cdot \vec{x}$
b) the angle between \vec{x} and \vec{z}
\{137.7 degrees\}
c) $(2 \vec{x}-\vec{y}) \cdot(5 \vec{x}+\vec{y})$
3. Calculate the work done* if a box is pulled from point A to point B (as illustrated) by a force of 80 N applied at an angle of 30 degrees to the horizontal. (*find work done on box)

4. Given $\vec{y}=2 \hat{i}+2 \hat{j}+7 \hat{k}, \quad \vec{x}=(-1,4,6), \quad \vec{z}=(3,-2,-3), \quad A(-1,-3,5), \quad B(-3,-2,4)$

Find: a) $\vec{y} \cdot \vec{x}$
b) the angle between \vec{x} and \vec{z}
c) $(2 \vec{x}-\vec{y}) \cdot(5 \vec{x}+\vec{y})$
5. Given $W(-1,5,3), X(6,-2,-2)$ and $Y(-2,-7,9)$, find:
a) the co-ordinates of the point Z if $W X Y Z$ is a parallelogram.
$\{Z(-9,0,14)\}$
b) the angle in the parallelogram at X.

