The Dot Product and Applications

There are situations in physics where vectors can be combined in ways other than addition. The scalar quantity **work** is defined as the displacement travelled multiplied by the magnitude of the applied force in the direction of motion. The units are Newton-metres also known as joules (J).

Ex. Aaron is pulling his sled up a hill with a force of 120 N at an angle of 20° to the surface of the

The work done by Aaron in pulling his sled up the hill is 11276 J.

This new product is called the **dot product**.

Applications of the Dot Product

Definition: The <u>dot product</u> of two vectors \vec{u} and \vec{v} is $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$ where θ is the angle between \vec{u} and \vec{v} .

This is a scalar quantity and is sometimes called the scalar product. Of course this works in three space as well.

Properties of the Dot Product

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$a (\vec{u} \cdot \vec{v}) = (a \vec{u}) \cdot \vec{v} = \vec{u} \cdot (a \vec{v}), a \in \Re$$

$$\hat{i} \cdot \hat{i} = 1$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

$$\hat{j} \cdot \hat{j} = 1$$

$$\hat{u} \cdot \vec{u} = \left| \vec{u} \right|^2$$

$$\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{i} = 0$$

Dot Product in Algebraic Form in R²

Given
$$\vec{u} = (u_1, u_2)$$
 $\vec{v} = (v_1, v_2)$
 $\vec{u} \cdot \vec{v} = (u_1, u_2)$ (v_1, v_2)
 $= (u_1\hat{i} + u_2\hat{j}) \cdot (v_1\hat{i} + v_2\hat{j})$
 $= u_1\hat{i} \cdot (v_1\hat{i} + v_2\hat{j}) + u_2\hat{j} \cdot (v_1\hat{i} + v_2\hat{j})$
 $= u_1v_1\hat{i}\cdot\hat{i} + u_1v_2\hat{i}\cdot\hat{j} + u_2v_1\hat{j}\cdot\hat{i} + u_2v_2\hat{j}\cdot\hat{j}$
 $= u_1v_1 + u_2v_2$

Dot Product in Algebraic Form in R³

Given $\vec{u} = (u_1, u_2, u_3)$ $\vec{v} = (v_1, v_2, v_3)$

$$\begin{split} \vec{u} \cdot \vec{v} &= (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) \\ &= (u_1 \hat{i} + u_2 \hat{j} + u_3 \hat{k}) \cdot (v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}) \\ &= u_1 \hat{i} \cdot (v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}) + u_2 \hat{j} \cdot (v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}) + u_3 \hat{k} \cdot (v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}) \\ &= u_1 v_1 \hat{i} \cdot \hat{i} + u_1 v_2 \hat{i} \cdot \hat{j} + u_1 v_3 \hat{i} \cdot \hat{k} + u_2 v_1 \hat{j} \cdot \hat{i} + u_2 v_2 \hat{j} \cdot \hat{j} + u_2 v_3 \hat{j} \cdot \hat{k} + u_3 v_1 \hat{k} \cdot \hat{i} + u_3 v_2 \hat{k} \cdot \hat{j} + u_3 v_3 \hat{k} \cdot \hat{k} \\ &= u_1 v_1 + u_2 v_2 + u_3 v_3 \end{split}$$

Theorem: Two non-zero vectors are perpendicular if and only if $\vec{u} \cdot \vec{v} = 0$.

Applications of the Dot Product

#1 Finding the angle between two vectors in component form.

Find the angle between $\vec{u} = (-1, 5, 2)$ $\vec{v} = (2, -3, 1)$

#2 Finding a vector perpendicular to a given vector.

Ex. Find a vector perpendicular to $\vec{w} = (-4, 7)$ Ex. Find a vector perpendicular to $\vec{w} = (-4, 7, 3)$

#3 Finding the dot product of the sum or difference of the same two vectors.

Ex. Given $\vec{u} = (-1, 5) \vec{v} = (2, -3)$ Find $(3\vec{u} - \vec{v}) \cdot (2\vec{u} + \vec{v})$

#4 Finding the work done.

Work = Displacement • Force along the displacement
Work =
$$|\vec{f}| |\vec{d}| \cos \theta$$

scalar measured in
Joules
 \vec{d}

Homework on dot product and work:

3. Calculate the work done* if a box is pulled from point A to point B (as illustrated) by a force of 80 N applied at an angle of 30 degrees to the horizontal. (*find work done on box) {1230 Joules}

16 m

4. Given $\vec{y} = 2\hat{i} + 2\hat{j} + 7\hat{k}$, $\vec{x} = (-1,4,6)$, $\vec{z} = (3,-2,-3)$, A(-1,-3,5), B(-3,-2,4)

Find:	a) $\vec{y} \cdot \vec{x}$	<mark>{48}</mark>
	b) the angle between \vec{x} and \vec{z}	<mark>{149 degrees }</mark>
	c) $(2\vec{x} - \vec{y}) \cdot (5\vec{x} + \vec{y})$	<mark>{329}</mark>

5. Given W(-1,5,3), X(6,-2,-2) and Y(-2,-7,9), find:
 a) the co-ordinates of the point Z if WXYZ is a parallelogram.
 b) the angle in the parallelogram at X.
 {61.8 degrees }