Challenge Set \#3

1) If \vec{a} and \vec{b} are perpendicular unit vectors, what is the length of $\vec{a} \times \vec{b}$?
2) Prove that $|\vec{a} \times \vec{b}|=\sqrt{(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})-(\vec{a} \cdot \vec{b})^{2}}$.
3) Show that $\vec{u} \times(\vec{v} \times \vec{w}) \neq(\vec{u} \times \vec{v}) \times \vec{w}$.
4) Show that $\vec{u} \cdot(\vec{v} \times \vec{w})=(\vec{u} \times \vec{v}) \cdot \vec{w}$.
5) Prove that $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2 \vec{a} \times \vec{b}$ for all $\vec{a}, \vec{b} \in \mathfrak{R}^{3}$.
6) The vector $\vec{u}=(3,-2,1)$ is given. Determine any three non-collinear vectors that are perpendicular to \vec{u}. Show that the three vectors you determined are coplanar.
7) Three vectors \vec{u}, \vec{v}, and \vec{w} have a common initial point. Their endpoints form a triangle. Prove that the magnitude of the vector $\frac{1}{2}(\vec{u} \times \vec{v}+\vec{v} \times \vec{w}+\vec{w} \times \vec{u})$ is equal to the area of the triangle.
8) For any vectors \vec{a}, \vec{b}, and \vec{c}, explain why $(\vec{a} \times \vec{b}) \times \vec{c}$ lies in the plane of \vec{a} and \vec{b}.
9) Given the vectors $\vec{x}=(a, 2,3), \vec{y}=(1, b,-2)$ and $\vec{z}=(-7,11, c)$ are mutually perpendicular vectors, find a, b and c .
10) A body diagonal of a unit cube is a line through the centre joining opposite vertices. A face diagonal is a diagonal along a face of the cube. Find the angle between a body diagonal and a face diagonal of a unit cube.
11) Find the total work done by a 15 N force, \vec{F}, in the direction of vector $(1,2,2)$ when it moves a particle from $\mathrm{O}(0,0,0)$ to $\mathrm{P}(1,-3,4)$ and then from P to $\mathrm{A}(7,2,5)$. The distance is measured in metres.
12) Find the total work done by a 15 N force, \vec{F}, in the direction of vector $(1,2,2)$ when it moves a particle from $\mathrm{O}(0,0,0)$ to $\mathrm{R}(-2,4,0)$ and then from R to $\mathrm{S}(11,1,-1)$, and then from S to $\mathrm{A}(7,2,5)$. The distance is measured in metres.
