Challenge Set #3

- 1) If \vec{a} and \vec{b} are perpendicular unit vectors, what is the length of $\vec{a} \times \vec{b}$?
- 2) Prove that $\left| \vec{a} \times \vec{b} \right| = \sqrt{(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b}) (\vec{a} \cdot \vec{b})^2}$.
- 3) Show that $\vec{u} \times (\vec{v} \times \vec{w}) \neq (\vec{u} \times \vec{v}) \times \vec{w}$.
- 4) Show that $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$.
- 5) Prove that $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b}) = 2\vec{a} \times \vec{b}$ for all $\vec{a}, \vec{b} \in \Re^3$.
- 6) The vector $\vec{u} = (3,-2,1)$ is given. Determine any three non-collinear vectors that are perpendicular to \vec{u} . Show that the three vectors you determined are coplanar.
- 7) Three vectors \vec{u} , \vec{v} , and \vec{w} have a common initial point. Their endpoints form a triangle. Prove that the magnitude of the vector $\frac{1}{2}(\vec{u} \times \vec{v} + \vec{v} \times \vec{w} + \vec{w} \times \vec{u})$ is equal to the area of the triangle.
- 8) For any vectors \vec{a} , \vec{b} , and \vec{c} , explain why $(\vec{a} \times \vec{b}) \times \vec{c}$ lies in the plane of \vec{a} and \vec{b} .
- 9) Given the vectors $\vec{x} = (a,2,3)$, $\vec{y} = (1,b,-2)$ and $\vec{z} = (-7,11,c)$ are mutually perpendicular vectors, find a, b and c.
- 10) A body diagonal of a unit cube is a line through the centre joining opposite vertices. A face diagonal is a diagonal along a face of the cube. Find the angle between a body diagonal and a face diagonal of a unit cube.
- 11) Find the total work done by a 15 N force, \vec{F} , in the direction of vector (1, 2, 2) when it moves a particle from O(0, 0, 0) to P(1, -3, 4) and then from P to A(7, 2, 5). The distance is measured in metres.
- 12) Find the total work done by a 15 N force, \vec{F} , in the direction of vector (1, 2, 2) when it moves a particle from O(0, 0, 0) to R(-2, 4, 0) and then from R to S(11, 1, -1), and then from S to A(7, 2, 5). The distance is measured in metres.