The diagram shows a regular hexagon. Write a single vector that is equivalent to each expression.

$$CA + AB$$

$$EF - AB$$

Vectors \vec{u} and \vec{v} are perpendicular, where $\vec{u} = (3,-4)$ and $\vec{v} = (6,k)$. What is the value of k?

Find
$$\overrightarrow{GE} - \overrightarrow{TE} - \overrightarrow{GD}$$

Given
$$\vec{u} = (5,-2)$$
 and $\vec{v} = (8,5)$ determine $4\vec{u} - 2\vec{v}$

Determine the magnitude of the vector joining the points
$$A(1,3,-7)$$
 and $B(0,2,3)$

A 50 kg sign is being suspended from 2 wires of length 4 m and 7 m which are attached to two points that are 8 m apart. Find the tensions in the wires.
Determine the angle between the vectores $\vec{u} = (3,-4,-2)$ and $\vec{v} = (6,-1,5)$.
Find the resultant of the following forces: 275 N at $S50^{\circ}W$ 195 N at $N65^{\circ}E$
225 N at <i>N</i> 15°W