Challenge Set \#3

1) Determine two lines in the form $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+k\left(d_{1}, d_{2}, d_{3}\right)$ that are skew and $d_{1}, d_{2}, d_{3} \neq 0$.
2) Find the symmetric equations of the line that passes through the point $(0,1,2)$ as well as the lines $x=y=z+2$ and $\frac{x}{-2}=\frac{y+3}{1}=\frac{z}{3}$.
3) For what value of k will the lines $\frac{x-k}{3}=\frac{y+4}{2}=\frac{z+6}{1}$ and $(x, y, z)=(1,1,2)+m(3,-1,-1)$ have:
a) one point of intersection
b) no points of intersection
4) Consider the lines $(x, y, z)=(1,-1,1)+k(3,2,1)$ and $(x, y, z)=(2,-3,0)+t(1,2,3)$. Find the vector equation of the line that is perpendicular to, and passes through these two lines.

Challenge Set \#3:

1) Determine two lines in the form $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+k\left(d_{1}, d_{2}, d_{3}\right)$ that are skew and $d_{1}, d_{2}, d_{3} \neq 0$.
2) Find the symmetric equations of the line that passes through the point $(0,1,2)$ as well as the lines $x=y=z+2$ and $\frac{x}{-2}=\frac{y+3}{1}=\frac{z}{3}$.
3) For what value of k will the lines $\frac{x-k}{3}=\frac{y+4}{2}=\frac{z+6}{1}$ and $(x, y, z)=(1,1,2)+m(3,-1,-1)$ have:
a) one point of intersection
b) no points of intersection
4) Consider the lines $(x, y, z)=(1,-1,1)+k(3,2,1)$ and $(x, y, z)=(2,-3,0)+t(1,2,3)$. Find the vector equation of the line that is perpendicular to, and passes through these two lines.
