Intersection of Three Planes

Lets consider three planes given by their Cartesian equations:

$$
\begin{aligned}
& \pi_{1}: A_{1} x+B_{1} y+C_{1} z+D_{1}=0 \\
& \pi_{2}: A_{2} x+B_{2} y+C_{2} z+D_{2}=0 \\
& \pi_{3}: A_{3} x+B_{3} y+C_{3} z+D_{3}=0
\end{aligned}
$$

The intersection of these planes is related to the solution of this 3×3 system of equations. Use substitution/elimination to create a 2×2 system then solve this system.

> No intersection of all three planes
> Inconsistent
> No solution to system of equations
> A, B, C are not proportional

- No normals are collinear
> Normals are coplanar $\left(\vec{n}_{\pi_{1}} \times \vec{n}_{\pi_{2}}\right) \bullet \vec{n}_{\pi_{3}}=0$
> solving 2×2 system results in false statement like $0=1$. This implies any two planes intersect but not all three.

Case 5: Spine of a book

or

Case 6: Corner of the room

> Line of intersection
> Consistent and dependent on one parameter
\Rightarrow No solution to system of equations
$\Rightarrow A, B, C$ are not proportional
> No normals are collinear
$>$ Normals are coplanar $\left(\vec{n}_{\pi_{1}} \times \vec{n}_{\pi_{2}}\right) \bullet \vec{n}_{\pi_{3}}=0$
> solving 2×2 system results $0=0$.
> Two scalar equations are equivalent. A, B, C, D are proportional for these two equations.
> Use two non-equivalent equations to find intersection
> Point of intersection
> Consistent and independent
> There is a solution to system of equations
> A, B, C are not proportional
> No normals are collinear $\vec{n}_{\pi_{1}} \neq m \vec{n}_{\pi_{2}} \neq k \vec{n}_{\pi_{3}}$
> No normals are coplanar $\left(\vec{n}_{\pi_{1}} \times \vec{n}_{\pi_{2}}\right) \bullet \vec{n}_{\pi_{3}} \neq 0$
> You will get a unique value for x, y, z when you solve the 3×3 system.

Examples:

For each set of three planes determine the intersection (if any). For each set classify the system as consistent or inconsistent, and (if possible) dependent or independent. For each set state the geometrical interpretation between the planes (what case is it?).

SET 1: $\left\{\begin{array}{l}\pi_{1}: x-3 y-2 z+9=0 \\ \pi_{2}: 2 x-5 y+z-3=0 \\ \pi_{3}:-3 x+6 y+2 z-8=0\end{array}\right.$
SET 2: $\left\{\begin{array}{l}\pi_{1}: x+y+2 z+2=0 \\ \pi_{2}: 3 x-y+14 z-6=0 \\ \pi_{3}: x+2 y+5=0\end{array}\right.$

SET 3: $\left\{\begin{array}{l}\pi_{1}: x-y-2 z-1=0 \\ \pi_{2}: 2 x-2 y-4 z-2=0 \\ \pi_{3}:-4 x+4 y+8 z+4=0\end{array}\right.$
SET 4: $\left\{\begin{array}{l}\pi_{1}: x+2 y+3 z-1=0 \\ \pi_{2}: 2 x+4 y+6 z+1=0 \\ \pi_{3}:-x-2 y-3 z-3=0\end{array}\right.$

SET 5: $\left\{\begin{array}{l}\pi_{1}: x+y-z-1=0 \\ \pi_{2}: x+y+z+2=0 \\ \pi_{3}:-2 x-2 y+2 z-3=0\end{array}\right.$
SET 6: $\left\{\begin{array}{l}\pi_{1}: 2 x+y+z-1=0 \\ \pi_{2}:-x+y+z+1=0 \\ \pi_{3}: x+y+z=0\end{array}\right.$

SET $7:\left\{\begin{array}{l}2 x-y+z=9 \\ 3 x+y-z=-4 \\ x+y-2 z=-11\end{array}\right.$
SET 8: $\left\{\begin{array}{l}2 x-y+z=5 \\ 4 x-2 y+2 z=6 \\ -6 x+3 y-3 z=-15\end{array}\right.$

1. For each set of three planes determine the intersection (if any). For each set classify the system as consistent or inconsistent, and (if possible) dependent or independent. For each set state the geometrical interpretation between the planes (what case is it?).
SET 1: $\left\{\begin{array}{l}\pi_{1}: x+2 y+3 z-4=0 \\ \pi_{2}: 2 x-y+4 z+7=0 \\ \pi_{3}: 3 x-14 y+z+48=0\end{array}\right.$
SET 2: $\left\{\begin{array}{l}\pi_{1}: 2 x-3 y+z=22 \\ \pi_{2}: x+y-z=-9 \\ \pi_{3}: x-y+3 z=21\end{array}\right.$
SET 3: $\left\{\begin{array}{l}\pi_{1}: 2 x-y-z-4=0 \\ \pi_{2}: 3 x-2 y+3 z-5=0 \\ \pi_{3}: 13 x-8 y+7 z+7=0\end{array}\right.$
SET 4: $\left\{\begin{array}{l}\pi_{1}: 5 x-y+z-19=0 \\ \pi_{2}: 2 x+y-4 z-3=0 \\ \pi_{3}: 3 x-2 y+2 z-10=0\end{array}\right.$
SET 5: $\left\{\begin{array}{l}\pi_{1}: 2 x-y-z-4=0 \\ \pi_{2}: 3 x-2 y+3 z-5=0 \\ \pi_{3}: 4 x-2 y-2 z+7=0\end{array}\right.$
SET 6: $\left\{\begin{array}{l}\pi_{1}: 5 x-y+z-9=0 \\ \pi_{2}: 2 x-y+4 z+15=0 \\ \pi_{3}: 3 x-2 y+2 z+3=0\end{array}\right.$

SET 7: $\left\{\begin{array}{l}\pi_{1}: x-y+z-9=0 \\ \pi_{2}: 2 x-2 y+2 z-18=0 \\ \pi_{3}: 3 x-3 y+3 z-27=0\end{array}\right.$
SET 8: $\left\{\begin{array}{l}\pi_{1}: x-y+z-9=0 \\ \pi_{2}: 2 x-2 y+2 z+18=0 \\ \pi_{3}: 3 x-3 y+3 z-2=0\end{array}\right.$
2. In the following system of equations, k is a real number.
$\pi_{1}: x-2 y+z=4$
$\pi_{2}: x-y-z=3$
$\pi_{3}: x+y+k z=1$
For what value(s) of k does the system
i) have exactly one solution?
ii) have an infinite number of solutions?

