Finding the point of intersection of two lines is also referred to as solving a system of linear equations.

The solution can be classified in the following manner:

Explore the intersection of the following systems

a) $\begin{aligned} & \ell_{1}:(x, y, z)=(-2,0,-3)+t(5,1,3) \\ & \ell_{2}:(x, y, z)=(5,8,-6)+s(-1,2,-3)\end{aligned}$
b)
$\ell_{1}: x+2 y=3$
) $\ell_{2}:(x, y)=(5,-1)+k(6,-3)$
$\ell_{1}: \vec{r}=(2,-1,0)+t(1,2,-3)$
c) $\ell_{2}: \frac{x+1}{-2}=\frac{y-1}{1}=\frac{z-2}{1}$
d) $\begin{aligned} & \ell_{1}:(x, y, z)=(-2,0,-3)+t(2,1,3) \\ & \ell_{2}:(x, y, z)=(2,2,3)+s(-4,-2,-6)\end{aligned}$

Investigation:
$\ell_{1}:(x, y, z)=(-2,0,-3)+t(5,1,3)$
\rightarrow In parametric form: $\ell_{1}: y=t \quad, \ell_{2}: y=8+2 s$
$z=-3+3 t \quad z=-6-3 s$

$$
x=-2+5 t \quad x=5-s
$$

a) $\ell_{2}:(x, y, z)=(5,8,-6)+s(-1,2,-3)$

\rightarrow In parametric form: | x | $=-2+5 t$ |
| ---: | :--- |
| $\ell_{1}: y$ | $=t$ |
| z | $=-3+3 t$ |,$\ell_{2}:$| x | $=5-s$ |
| ---: | :--- |
| y | $=8+2 s$ |
| z | $=-6-3 s$ |

First, set coordinates equal to each other

$$
\begin{array}{rlrl}
-2+5 t & =5-s \\
t & =8+2 s \\
-3+3 t & =-6-3 s & & \\
t+2 s & =7 \\
t-2 s & =8 \\
3 t+3 s & =-3
\end{array}
$$

b)
$\ell_{1}: x+2 y=3$
$\ell_{2}: 3 x+6 y=9$
\rightarrow 3(1)
$0 x+0 y=0$

This is always true. \therefore lines are equal and have ∞ 'ly many points of intersection.
The system is consistent and dependent.
For solution, set one coordinate equal to a variable and solve for the other coordinate in terms of this variable.

Let $y=k$, sub into (1)

$$
\begin{aligned}
& x+2 k=3 \\
& x=3-2 k
\end{aligned}
$$

\therefore The solution set is: $(3-2 k, k) \quad k \in \mathfrak{R}$

$$
\begin{aligned}
& \ell_{1}: \vec{r}=(2,-1,0)+t(1,2,-3) \\
& \text { c) } \\
& \ell_{2}: \frac{x+1}{-2}=\frac{y-1}{1}=\frac{z-2}{1}
\end{aligned}
$$

$x=2+t$
In parametric form: $\ell_{1}: y=-1+2 t$

$$
z=-3 t
$$

$$
\begin{aligned}
\frac{2+t+1}{-2} & =\frac{-1+2 t-1}{1} & \frac{-1+2 t-1}{1} & =\frac{-3 t-2}{1} \\
t & =\frac{1}{5} & t & =0
\end{aligned}
$$

$$
\begin{aligned}
& t ' s \text { are not equal } \therefore \text { no solution } \\
& \overrightarrow{d_{1}}=(1,2,-3) \quad \overrightarrow{d_{2}}=(-2,1,1) \\
& \overrightarrow{d_{1}} \neq m \overrightarrow{d_{2}}
\end{aligned}
$$

\therefore skew lines

Intersection of Lines Homework:

1. Find the intersection of the following lines. Classify the system as consistent or inconsistent, if possible dependent or independent
a) $\begin{aligned} & \ell_{1}: 5 x-2 y+25=0 \\ & \ell_{2}: 5 x-2 y-5=0\end{aligned}$
b) $\begin{aligned} & \ell_{1}: 2 x-y+14=0 \\ & \ell_{2}: 2 x-y+3=0\end{aligned}$
c) $\begin{aligned} & \ell_{1}:(x, y)=(-1,3)+t(-2,4) \\ & \ell_{2}: 2 x+y-1=0\end{aligned}$
d) $\ell_{1}:(x, y, z)=(-1,3,5)+t(1,-2,6)$ and $\ell_{2}:\left\{\begin{array}{l}x=-13+3 k \\ y=-8+k \\ z=-1+3 k\end{array}\right.$
e) $\begin{aligned} & \ell_{1}:(x, y)=(-1,4)+t(-1,4) \\ & \ell_{2}: 4 x+y-3=0\end{aligned}$
f) $\begin{aligned} \quad \ell_{1} & :(x, y, z)=(-1,3,5)+t(1,-2,6) \text { and } \\ \ell_{2} & :\left\{\begin{array}{l}x=-13+3 k \\ y=-8+k \\ z=8+3 k\end{array}\right.\end{aligned}$
g) $\begin{aligned} & \ell_{1}: 2 x+3 y-30=0 \\ & \ell_{2}: x-2 y+13=0\end{aligned}$
i) $\ell_{1}:\left\{\begin{array}{l}x=-1+3 k \\ y=1+4 k \\ z=-2 k\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=-1+2 t \\ y=3 t \\ z=-7+t\end{array}\right.$
h) $\ell_{1}:\left\{\begin{array}{l}x=18+3 k \\ y=-2-2 k\end{array}\right.$ and $\ell_{2}:\left\{\begin{array}{l}x=-5+2 t \\ y=4+t\end{array}\right.$
j) $\quad \ell_{1}:(x, y, z)=(2,1,0)+t(1,-1,1)$ and
$\ell_{2}:(x, y, z)=(3,0,-1)+k(2,3,-1)$

Answers:
a) system is inconsistent, lines are parallel
b) system is inconsistent, lines are parallel
c) system is consistent and dependent, solution is ($0.5-0.5 a, a), a \in \mathfrak{R}$
d) system is inconsistent, lines are skewed
e) system is inconsistent, lines are parallel
f) system is consistent and independent, solution is (2, $-3,23$)
g) system is consistent and independent, solution is $(3,8)$
h) system is consistent and independent, solution is $(3,8)$
i) system is consistent and independent, solution is (5, 9, -4)
j) system is inconsistent, lines are skewed

