Intersection of Lines in Two and Three Space

Finding the point of intersection of two lines is also referred to as solving a system of linear equations.

The solution can be classified in the following manner:

Explore the intersection of the following systems

a)
$$\begin{array}{l} \ell_1:(x,y,z)=(-2,0,-3)+t(5,1,3)\\ \ell_2:(x,y,z)=(5,8,-6)+s(-1,2,-3) \end{array}$$
b)
$$\begin{array}{l} \ell_1:x+2y=3\\ \ell_2:(x,y)=(5,-1)+k(6,-3) \end{array}$$

c)
$$\ell_1: \vec{r} = (2, -1, 0) + t(1, 2, -3)$$
$$\ell_2: \frac{x+1}{-2} = \frac{y-1}{1} = \frac{z-2}{1}$$
d)
$$\ell_1: (x, y, z) = (-2, 0, -3) + t(2, 1, 3)$$
$$\ell_2: (x, y, z) = (2, 2, 3) + s(-4, -2, -6)$$

Investigation:

a)
$$\begin{array}{l} \ell_1:(x,y,z) = (-2,0,-3) + t(5,1,3) \\ \ell_2:(x,y,z) = (5,8,-6) + s(-1,2,-3) \end{array} \rightarrow \text{ In parametric form: } \begin{array}{l} x = -2 + 5t \\ \vdots y = t \\ z = -3 + 3t \end{array}, \begin{array}{l} \ell_2: y = 8 + 2s \\ z = -6 - 3s \end{array}$$

> First, set coordinates equal to each other

$$\begin{array}{ccc} -2+5t=5-s & 5t+s=7 & (1) \\ t=8+2s & \rightarrow & t-2s=8 & (2) \\ -3+3t=-6-3s & 3t+3s=-3 & (3) \end{array}$$

> Solve for the unknown variables for any <u>two</u> components

Solving for s and t in the first two components			
	1 lt = 22	-5(1) +(2)	11s = -33
21+2	t = 2	-3(1)+(2)	s = -3

> Test the solution with the third component

sub
$$t = 2$$
 and $s = -3$ into (3)
 $LS = 3(2) + 3(-3)$
 $6 - 9$
 $= -3$
 $= RS$
 $x = -2 + 5(2) = 8$
 $y = 2$
 $z = -3 + 3(2) = 3$

The point is (8,2,3) and the system is consistent and independent.

b)
$$\ell_1: x + 2y = 3$$
 (1)
 $\ell_2: 3x + 6y = 9$ (2) \rightarrow 3(1)-(2): $0x+0y = 0$

This is always true. \therefore lines are equal and have ∞ 'ly many points of intersection.

The system is consistent and dependent.

<u>For solution</u>, set one coordinate equal to a variable and solve for the other coordinate in terms of this variable.

Let
$$y = k$$
, sub into (1)
 $x + 2k = 3$
 $x = 3 - 2k$

 \therefore The solution set is: (3-2k,k) $k \in \Re$

c)
$$\ell_1: \vec{r} = (2, -1, 0) + t(1, 2, -3)$$

 $\ell_2: \frac{x+1}{-2} = \frac{y-1}{1} = \frac{z-2}{1}$

In parametric form: ℓ_1 : y = -1+2tz = -3t sub ℓ_1 into ℓ_2 $\frac{x+1}{-2} = \frac{y-1}{1} = \frac{z-2}{1}$

$$\frac{2+t+1}{-2} = \frac{-1+2t-1}{1} \qquad \qquad \frac{-1+2t-1}{1} = \frac{-3t-2}{1}$$
$$t = \frac{1}{5} \qquad \qquad t = 0$$

t's are <u>not</u> equal \therefore no solution

$$\overrightarrow{d_1} = (1,2,-3) \qquad \overrightarrow{d_2} = (-2,1,1)$$
$$\overrightarrow{d_1} \neq m\overrightarrow{d_2}$$

: skew lines

Intersection of Lines Homework:

1. Find the intersection of the following lines. Classify the system as consistent or inconsistent, if possible dependent or independent

a)
$$\ell_1: 5x - 2y + 25 = 0$$

 $\ell_2: 5x - 2y - 5 = 0$
b) $\ell_1: 2x - y + 14 = 0$
 $\ell_2: 2x - y + 3 = 0$

c)
$$\ell_1: (x, y) = (-1,3) + t(-2,4)$$

 $\ell_2: 2x + y - 1 = 0$

e) $\ell_1: (x, y) = (-1, 4) + t(-1, 4)$ $\ell_2: 4x + y - 3 = 0$

g) $\ell_1: 2x + 3y - 30 = 0$ $\ell_2: x - 2y + 13 = 0$

d)
$$\ell_1: (x, y, z) = (-1,3,5) + t(1,-2,6)$$
 and
$$\int_{x=-13+3k} x = -13+3k$$

$$y = -8 + k$$
$$z = -1 + 3k$$

f)
$$\ell_1: (x, y, z) = (-1,3,5) + t(1,-2,6)$$
 and
 $\ell_2: \begin{cases} x = -13 + 3k \\ y = -8 + k \\ z = 8 + 3k \end{cases}$

h)
$$\ell_1: \begin{cases} x = 18 + 3k \\ y = -2 - 2k \end{cases}$$
 and $\ell_2: \begin{cases} x = -5 + 2t \\ y = 4 + t \end{cases}$

i)
$$\ell_1: \begin{cases} x = -1 + 3k \\ y = 1 + 4k \\ z = -2k \end{cases}$$
 and $\ell_2: \begin{cases} x = -1 + 2t \\ y = 3t \\ z = -7 + t \end{cases}$

j)
$$\ell_1: (x, y, z) = (2,1,0) + t(1,-1,1)$$
 and
 $\ell_2: (x, y, z) = (3,0,-1) + k(2,3,-1)$

Answers:

- a) system is inconsistent, lines are parallel
- b) system is inconsistent, lines are parallel
- c) system is consistent and dependent, solution is $(0.5-0.5a,a), a \in \Re$
- d) system is inconsistent, lines are skewed
- e) system is inconsistent, lines are parallel
- f) system is consistent and independent, solution is (2, -3, 23)
- g) system is consistent and independent, solution is (3,8)
- h) system is consistent and independent, solution is (3,8)
- i) system is consistent and independent, solution is (5, 9, -4)
- j) system is inconsistent, lines are skewed