Challenge set \#1

1. If \hat{a} and \hat{b} are unit vectors that make angle of 60° with each other, calculate
a) $|3 \hat{a}-5 \hat{b}|$
b) $|8 \hat{a}+3 \hat{b}|$
2. What conditions must be satisfied by the non-zero vectors \vec{u} and \vec{v} for the following to be true?
a) $|\vec{u}+\vec{v}|=|\vec{u}-\vec{v}|$
b) $|\vec{u}+\vec{v}|=|\vec{u}|+|\vec{v}|$
c) $|\vec{u}+\vec{v}|=|\vec{u}|-|\vec{v}|$
d) $|\vec{u}-\vec{v}|=|\vec{u}|+|\vec{v}|$
3. ABCDEF is a regular hexagon with sides of unit length. Find the magnitude and direction of $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}$
4. If $|\vec{x}|=11,|\vec{y}|=23$ and $|\vec{x}-\vec{y}|=30$, find $|\vec{x}+\vec{y}|$
5. If three vertices of a parallelogram are $(-5,3),(5,2)$ and $(7,-8)$, determine all possible coordinates of the fourth vertex.
6. Show that the three points $A(1,1,-2), B(10,1,-8)$ and $C(-2,1,0)$ are collinear.
7. A triangle has vertices $A(-1,3,4), B(3,-1,1)$ and $C(5,1,1)$. Show that this is a right triangle.
8. The resultant of two vectors \vec{a} and \vec{b} is the vector $\vec{r}=5\left[E 53^{\circ} S\right]$. If $\vec{a}=\sqrt{29}\left[E 21.8^{\circ} N\right]$, determine \vec{b}.
9. The diagonals of parallelogram $A B C D$ meet at the point E. Show that $\overrightarrow{E A}+\overrightarrow{E B}+\overrightarrow{E C}+\overrightarrow{E D}=\overrightarrow{0}$
10. Recall that the three medians of a triangle $A B C$ intersect in a point G and that G divides each median in a 2:1 ratio. Show that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\overrightarrow{0}$.
