Challenge set #1

- 1. If \hat{a} and \hat{b} are unit vectors that make an angle of 60° with each other, calculate a) $|3\hat{a}-5\hat{b}|$ b) $|8\hat{a}+3\hat{b}|$
- 2. What conditions must be satisfied by the non-zero vectors \vec{u} and \vec{v} for the following to be true?
- a) $|\vec{u} + \vec{v}| = |\vec{u} \vec{v}|$ b) $|\vec{u} + \vec{v}| = |\vec{u}| + |\vec{v}|$ c) $|\vec{u} + \vec{v}| = |\vec{u}| |\vec{v}|$ d) $|\vec{u} \vec{v}| = |\vec{u}| + |\vec{v}|$
- 3. ABCDEF is a regular hexagon with sides of unit length. Find the magnitude and direction of $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$
- 4. If $|\vec{x}| = 11$, $|\vec{y}| = 23$ and $|\vec{x} \vec{y}| = 30$, find $|\vec{x} + \vec{y}|$
- 5. If three vertices of a parallelogram are (-5, 3), (5, 2) and (7, -8), determine all possible coordinates of the fourth vertex.
- 6. Show that the three points A(1, 1, -2), B(10, 1, -8) and C(-2, 1, 0) are collinear.
- 7. A triangle has vertices A(-1, 3, 4), B(3, -1, 1) and C(5, 1, 1). Show that this is a right triangle.
- 8. The resultant of two vectors \vec{a} and \vec{b} is the vector $\vec{r} = 5[E53^{\circ}S]$. If $\vec{a} = \sqrt{29}[E21.8^{\circ}N]$, determine \vec{b} .
- 9. The diagonals of parallelogram ABCD meet at the point E. Show that $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \vec{0}$
- 10. Recall that the three medians of a triangle ABC intersect in a point G and that G divides each median in a 2:1 ratio. Show that $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \vec{0}$.