Challenge Set \#2

1. Find two planes π_{1} and π_{2} so that the line of intersection is $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$. Justify your solution.
2. Find the reflection of the point $\mathrm{P}(3,5,-1)$ in the mirror defined by $x-2 y+3 z-2=0$.
3. Find the reflection of the point $\mathrm{P}(-2,1,-5)$ in the line defined by $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$.
4. On the last test, I had to ensure that the pair of lines given were either intersecting or skew. How was I able to use planes to achieve this?

Challenge Set \#2

1. Find two planes π_{1} and π_{2} so that the line of intersection is $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$. Justify your solution.
2. Find the reflection of the point $\mathrm{P}(3,5,-1)$ in the mirror defined by $x-2 y+3 z-2=0$.
3. Find the reflection of the point $\mathrm{P}(-2,1,-5)$ in the line defined by $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$.
4. On the last test, I had to ensure that the pair of lines given were either intersecting or skew. How was I able to use planes to achieve this?

Challenge Set \#2

1. Find two planes π_{1} and π_{2} so that the line of intersection is $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$. Justify your solution.
2. Find the reflection of the point $\mathrm{P}(3,5,-1)$ in the mirror defined by $x-2 y+3 z-2=0$.
3. Find the reflection of the point $\mathrm{P}(-2,1,-5)$ in the line defined by $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$.
4. On the last test, I had to ensure that the pair of lines given were either intersecting or skew. How was I able to use planes to achieve this?
