Recall the example from before, solved using geometric vectors:
Find the magnitude and direction of the resultant of two vectors whose magnitudes are 5 and 8 respectively and the angle between them is 35°.

\therefore The resultant vector $\overrightarrow{O C}$ has magnitude $|\overrightarrow{O C}| \approx 12.4$ units and is 13.4° counter clockwise from $\overrightarrow{O A}$.

Lets look at a solution involving algebraic vectors.

NOTE: No NESW reference
Lets allow one vector to run along some axis.

$$
\begin{aligned}
& \overrightarrow{O A}=(8,0) \\
& \overrightarrow{O B}=\left(5 \cos 35^{\circ}, 5 \sin 35^{\circ}\right)=(4.1,2.9)
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{O C} & =\overrightarrow{O A}+\overrightarrow{O B} \\
& =(8,0)+(4.1,2.9) \\
& =(12.1,2.9) \\
& =12.4\left[R 13.5^{\circ} U\right]
\end{aligned}
$$

\therefore The resultant vector $\overrightarrow{O C}$ has magnitude $|\overrightarrow{O C}| \approx 12.4$ units and is 13.5° counter clockwise from $\overrightarrow{O A}$.

Vector Subtraction - adding the opposite
For vectors \vec{a} and \vec{b}

OR
Arrange \vec{a} and \vec{b} tail to tail

Algebraically, we have

$$
(a, b, c)-(d, e, f)=(a-d, b-e, c-f)
$$

Finding the Vector Between Two Points

$$
\begin{aligned}
\overrightarrow{P Q} & =\overrightarrow{P O}+\overrightarrow{O Q} \\
& =-\overrightarrow{O P}+\overrightarrow{O Q} \\
& =\overrightarrow{O Q}-\overrightarrow{O P} \\
& =\vec{Q}-\vec{P}
\end{aligned}
$$

Need to Know

- Commutative Property of Addition: $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
- Associative Property of Addition: $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
- Distributive Property of Addition: $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}, k \in \mathbf{R}$
- Adding $\overrightarrow{0}: \vec{a}+\overrightarrow{0}=\vec{a}$
- Associative Law for Scalars: $m(n \vec{a})=(m n) \vec{a}=m n \vec{a}$
- Distributive Law for Scalars: $(m+n) \vec{a}=m \vec{a}+n \vec{a}$

Example: If $G(-3,7,1)$ and $F(2,5,-3)$, find $\overrightarrow{G F}$.

Example: Are the points $\mathrm{A}(-3,5,-2), \mathrm{B}(3,-3,12)$ and $\mathrm{C}(6,-7,19)$ collinear?

Example: If $3(x,-2)-2(3,-2 y)=(5,1)$, find x and y.

