\qquad
Recall:
A complete analysis contains: intercepts, asymptotes, domain, Max/Min points, intervals of Inc/Dec, inflection points, intervals of CU/CD, and an accurate graph. You must also assess extrema using the first or second derivative tests.

The first derivative test:
 1. If $f^{\prime}(a)=0$ and $f(x)$ goes from increasing to decreasing then $x=a$ is a local maximum. I I 2. If $f^{\prime}(a)=0$ and $f(x)$ goes from decreasing to increasing then $x=a$ is a local minimum. I

I The second derivative test:

For a function $f(x)$, where $f^{\prime \prime}(x)$ exists on an interval containing a

1. If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$ then $x=a$ is a local minimum.

I 2. If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$ then $x=a$ is a local maximum.
L- -

Complete a full analysis on the following functions and graph:

1. $y=x^{2} e^{2 x}$
2. $k(x)=\frac{x^{2}}{e^{2 x}}$
3. $y=x-x^{\frac{1}{3}}$
4. $f(x)=x^{\frac{2}{3}}-1$
5. $f(x)=x^{\frac{4}{3}}-2 x^{\frac{1}{3}}$
6. $y=x-\sqrt{x}$
7. $g(x)=\frac{1}{\sqrt{1-x^{2}}}$

Solutions:

1. $\operatorname{Max}\left(-1, e^{-2}\right) \operatorname{Min}(0,0) \operatorname{IP}$ when $x=-1-\frac{\sqrt{2}}{2}$	2. $\operatorname{Max}\left(1, e^{-2}\right) \operatorname{Min}(0,0)$ IP when $x=1-\frac{\sqrt{2}}{2}$ and
and $x=\frac{\sqrt{2}}{2}-1$	$x=\frac{\sqrt{2}}{2}+1$
3. $\operatorname{Min}\left(\frac{1}{3 \sqrt{3}}, \frac{-2}{3 \sqrt{3}}\right) \operatorname{Max}\left(\frac{-1}{3 \sqrt{3}}, \frac{2}{3 \sqrt{3}}\right) \operatorname{IP}(0,0)$	4. Min $(0,-1)$
5. $\operatorname{Min}(0.5,-1.2) \operatorname{IP}(-1,3)(0,0)$	6. $\operatorname{Min}\left(\frac{1}{4}, \frac{-1}{4}\right)$
7. $\operatorname{Min}(0,1)$	

