MCV4U

1. Given that $|\vec{u}|=5$ and $|\vec{v}|=3$ and $|\vec{u}+2 \vec{v}|=10$, calculate $(3 \vec{u}+\vec{v}) \cdot(\vec{u}-2 \vec{v})$.
2. Consider the two lines $\ell_{1}: y=-x+7$ and $\ell_{2}: y=2 x+3$.
a. Determine a vector \vec{u} which is parallel to ℓ_{1}.
b. Determine a vector \vec{v} which is parallel to ℓ_{2}.
c. Find the angle θ between ℓ_{1} and ℓ_{2} by finding the angle between the two vectors you found in parts a) and b).
3. Given the vectors $\vec{u}=(-2,1,-1)$ and $\vec{v}=(-1,2,-1)$
a. Find a unit vector perpendicular to both \vec{u} and \vec{v}.
4. Given the vectors $\vec{a}=(1,2,1), \vec{b}=(2,1,0)$, and $\vec{c}=(4,5,2)$
a. Show that $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}$.
b. For three vectors \vec{u}, \vec{v}, and \vec{w}, if $\vec{u} \times \vec{v}=\vec{u} \times \vec{w}$, must it be true that $\vec{v}=\vec{w}$?
5. Given the vectors $\vec{a}=(1,2,-3), \vec{b}=(0,1,2)$, and $\vec{c}=(1,1,1)$, show that the cross product is not associative by verifying

$$
(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times(\vec{b} \times \vec{c})
$$

6. For non-zero vectors \vec{u}, \vec{v}, and \vec{w}, under what geometric conditions will $\vec{u} \cdot(\vec{v} \times \vec{w})$ be equal to 0 ?
7. If the vector projection of a vector \vec{a} on \vec{b} is equal to the vector projection of vector \vec{b} on \vec{a}, what can be said about the two vectors \vec{a} and \vec{b} ?
8. Vectors are said to be coplanar if they all lie in the same plane. Determine if the vectors $(1,3,2),(5,0,-1)$, and $(-4,3,3)$ are coplanar.

9. The area of a parallelogram is $A=$ base \times height. Use vector concepts to develop another equation for area of a parallelogram.

