Lines in R^{3}

Definition: A direction vector for a line is a vector parallel to the line. A line with direction vector $\vec{d}=\left(d_{1}, d_{2}, d_{3}\right)$.

$$
\begin{aligned}
& P_{0} P=k \vec{d} \\
& \left(x-x_{0}, y-y_{0}, z-z_{0}\right)=k\left(d_{1}, d_{2}, d_{3}\right) \\
& (x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+k\left(d_{1}, d_{2}, d_{3}\right) \\
& \overrightarrow{O P}=\overrightarrow{O P_{0}}+k \vec{d} \\
& \vec{p}=\vec{p}_{0}+k \vec{d}
\end{aligned}
$$

These last three equations are called the vector equation of a line in space (there are an infinite number of representations). You could use any \vec{d} and any \vec{p}_{0}. The scalar k is called a parameter.

If you equate the components, we get:

If we then solve for the parameter, we get:

which is called the symmetric equation of a line in three space.

Definition: A normal vector for a line is a vector $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$ which is perpendicular to the line.

So there is no scalar equation of a line (or Cartesian) in three space because there is no unique normal for a line in 3-space.

Ex. Find vector, parametric, and symmetric equations of the line that passes through $P_{1}(2,4,0)$ and $P_{2}(5,0,7)$. Does the point $\mathrm{Q}(-4,12,-14)$ lie on that line?

Ex. Given $\ell_{1}: \vec{r}_{1}=(3,4,3)+k(2,-1,5)$ and $\ell_{2}: r_{2}=(-9,8,-6)+m(-6,3,-15)$. Do these represent the same line?

Ex. Find symmetric equations of the line through $A(1,2,3)$ and $B(2,-1,3)$.

Ex. Do the equations $\ell_{1}: \frac{x-5}{2}=\frac{y+4}{3}=\frac{z+1}{-5}$ and $\ell_{2}: \frac{x+1}{-4}=\frac{y-1}{-6}=\frac{z+3}{10}$ represent the same line?

