3-D Vectors

We can expand our 2-dimensional ($x-y$) coordinate system, R^{2}, into a 3 -dimensional coordinate system, R^{3}, using $x-y$-, and z-axes.

If we have $A(a, b, c)$, then

$$
\overrightarrow{O A}=(a, b, c)=a \hat{i}+b \hat{j}+c \hat{k}
$$

In 3-dimensional space, the point $(2,3,5)$ is graphed as follows:

To reach the point $(2,3,5)$, we move 2 units along the x-axis, then 3 units in the y-direction, and then up 5 units in the $z-$ direction. This creates a prism.

Ex: Sketch $\vec{u}=(-1,3,-5)$

Length of a Vector

The general point $P(a, b, c)$ is shown on the 3 D graph. The point N is directly below P on the $x-y$ plane.

From Pythagoras' Theorem, we have $|\overrightarrow{O N}|^{2}=a^{2}+b^{2}$,
$|\overrightarrow{N P}|=c$

$$
\begin{aligned}
|\overrightarrow{O P}|^{2} & =|\overrightarrow{O N}|^{2}+|\overrightarrow{N P}|^{2} \\
& =a^{2}+b^{2}+c^{2}
\end{aligned}
$$

\therefore The distance from $(0,0,0)$ to the point
$\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is given by $|\overrightarrow{O P}|=\sqrt{a^{2}+b^{2}+c^{2}}$

Example: Determine \hat{u} if $\vec{u}=(-1,3,-5)$

Operations with Geometric and Algebraic Vectors

Scalar Multiplication - Geometric

Notice that all vectors that are scalar multiples of some vector \vec{F} are collinear.

If \vec{v} is a vector and $k \in \mathfrak{R}$, then $k \vec{v}$ is also a vector such that

1) $|k \vec{v}|=|k \| \vec{v}|$
2) the direction of \vec{v} and $k \vec{v}$ are the same if $k>0$ and opposite if $k<0$.

We then have the following,

Two vectors \vec{u} and \vec{v} are collinear if and only if (iff) it is possible to find some nonzero scalar k such that $\vec{u}=k \vec{v}$.

Scalar Multiplication - Algebraic

If $\vec{u}=(a, b)$ then $k \vec{u}=k(a, b)=(k a, k b)$

$$
\begin{aligned}
k(a, b) & =k(a \hat{i}+b \hat{j}) \\
& =(k a \hat{i}+k b \hat{j}) \\
& =(k a, k b)
\end{aligned}
$$

Vector Addition - Geometric

The resultant vector is the sum of two or more vectors; the combined effect of all vectors.

An equilibrant (force) is equal in magnitude but opposite in direction to the resultant.

Suppose we have two forces \vec{a} and \vec{b} applied to a point on a rock.
The sum $\vec{a}+\vec{b}$ is the resultant.

From this we have the Triangle Law of Addition
If \vec{a} and \vec{b} are two vectors arranged "head to tail" the sum $\vec{a}+\vec{b}$ is represented by $\overrightarrow{O C}$.

$$
\begin{aligned}
\overrightarrow{O A}+\overrightarrow{O B} & =\overrightarrow{O A}+\overrightarrow{A C} \\
& =\overrightarrow{O C}
\end{aligned}
$$

NOTE: $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$

Example: Find the magnitude and direction of the resultant of two vectors whose magnitudes are 5 and 8 respectively and the angle between them is 35°.

By the cosine law, we have
$|\overrightarrow{O C}| \approx 12.4$ units
By the sine law, we have

$$
\angle C O A \approx 13.4^{\circ}
$$

\therefore The resultant vector $\overrightarrow{O C}$ has magnitude $|\overrightarrow{O C}| \approx 12.4$ units and is 13.4° counter clockwise from $\overrightarrow{O A}$. \odot

Vector Addition - Algebraic

Suppose we have vectors ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) and ($\mathrm{d}, \mathrm{e}, \mathrm{f}$)
then $(a, b, c)+(d, e, f)=(a+d, b+e, c+f)$
Proof:

$$
\begin{aligned}
(a, b, c)+(d, e, f) & =a \hat{i}+b \hat{j}+c \hat{k}+d \hat{i}+e \hat{j}+f \hat{k} \\
& =(a+d) \hat{i}+(b+e) \hat{j}+(c+f) \hat{k} \\
& =(a+d, b+e, c+f)
\end{aligned}
$$

Example: If $\vec{u}=(3,4,-1)$ and $\vec{v}=(-1,2,4)$ and $\vec{w}=3 \vec{u}+\vec{v}$
find:
a) \hat{u}
b) $-3 \vec{u}$
c) $\vec{u}+\vec{v}$
d) \vec{w}

Homework on operations with vectors and 3-d Vectors 03:

1) a) Sketch $\vec{u}=(-1,2,-2)$. Find $\quad|\vec{u}|$. Find $\hat{u} . \quad\left\{|\vec{u}|=3, \hat{u}=\left(\frac{-1}{3}, \frac{2}{3}, \frac{-2}{3}\right)\right\}$
b) Sketch $\vec{u}=(4,-2,3)$. Find $\quad|\vec{u}|$. Find $\hat{u} . \quad\left\{|\vec{u}|=\sqrt{29}, \hat{u}=\left(\frac{4}{\sqrt{29}}, \frac{-2}{\sqrt{29}}, \frac{3}{\sqrt{29}}\right)\right\}$
2) Find the magnitude of the following vectors:
a) $(-12,-4,6)$
b) $(8,-27,21)$
c) $\left(\frac{14}{27}, \frac{-22}{27}, \frac{-7}{27}\right)$
d) $(-\sqrt{2}, 2 \sqrt{3}, \sqrt{2})$
3) What single vector is equal to each of these sums?
a) $\overrightarrow{P T}+\overrightarrow{T S}+\overrightarrow{S Q}$
$\{\overrightarrow{P Q}\}$
b) $\overrightarrow{A C}-\overrightarrow{G E}+\overrightarrow{C E}$
c) $\overrightarrow{E A}-\overrightarrow{C B}+\overrightarrow{D B}+\overrightarrow{A D}$
$\{\overrightarrow{E C}\}$
d) $\overrightarrow{P T}-\overrightarrow{Q T}+\overrightarrow{S R}-\overrightarrow{S Q}$
$\{\overrightarrow{A G}\}$
$\{\overrightarrow{P R}\}$
4) Find the sum of the vectors \vec{u} and \vec{v} if θ is the angle between them.
a) $|\vec{u}|=12,|\vec{v}|=21$ and $\theta=70^{\circ}$
$\left\{27.5,24^{\circ}\right.$ to $\left.\vec{v}\right\}$
b) $|\vec{u}|=3,|\vec{v}|=10$ and $\theta=115^{\circ}$
$\left\{9.1,17.38^{\circ}\right.$ to $\left.\vec{v}\right\}$
5) A tour boat travels 25 km due east and then $15 \mathrm{~km} S 50^{\circ} E$. Represent these displacements in a vector diagram, then calculate the resultant displacement.
$\left\{37.74 \mathrm{~km}, E 14.8^{\circ} \mathrm{S}\right.$ \}
6) Find a single vector equivalent to
a) $(2,-4)+(1,7)\{(3,3)\}$
b) $5(1,4)\{(5,20)\}$
c) $0(4,-5)\{(0,0)\}$
d) $(-6,0)+7(1,-1)\{(1,-7)\}$
7) Simplify $(2 \hat{i}+3 \hat{j})+4(\hat{i}-\hat{j})$.

$$
\{6 \hat{i}-\hat{j}\}
$$

8) For the set of points, $\mathrm{A}(2,0), \mathrm{B}(3,6), \mathrm{C}(4,1)$, and $\mathrm{D}(5,-5)$ use vectors to determine whether $\overrightarrow{A B}$ is parallel to $\overrightarrow{C D}$ and whether $|\overrightarrow{A B}|=|\overrightarrow{C D}|$? \{not parallel but magnitudes are equal \}
9) Find x and y if $3(x, 1)-2(2, y)=(2,1)$.

$$
\{x=2, y=1\}
$$

