Intersection of a line and a plane and of two planes and distance - Homework

1. Find the distance from the point $\mathrm{A}(-1,-3,5)$ and the plane $3 x-4 y+2 z-18=0$. Does the point lie above or below the plane. Justify your reasoning.
$\{0.19$ units, A is above the plane $\}$
2. Find the intersection of the line $\ell:(x, y, z)=(2,3,1)+t(-1,-2,3)$ and the plane $3 x-4 y+2 z-18=0$
$\{(0,-1,7)\}$
3. Find the parametric equations of the line of intersection of the planes $\begin{aligned} & \pi_{1}: 3 x-y+z-8=0 \\ & \pi_{2}: x-2 y+2 z+5=0\end{aligned}$.

$$
\left\{x=\frac{21}{5}, y=\frac{23}{5}+t, z=t\right\}
$$

4. Find the distance from the point $\mathrm{A}(-1,2,-6)$ and the plane $x-2 y-3 z-7=0$. Does the point lie above or below the plane. Justify your reasoning.
\{1.6 units, A is below the plane $\}$
5. Find the intersection of the line $\ell:(x, y, z)=(3,1,-1)+t(-2,-3,5)$ and the plane $2 x+y-3 z=-34$.
$\{(-1,-5,9)\}$
6. Find the parametric equations of the line of intersection of the planes $\begin{aligned} & \pi_{1}: 2 x-y+5 z-15=0 \\ & \pi_{2} \cdot 3 x-2 y-z+4=0\end{aligned}$.

Show that the direction vector for the line of intersection is a scalar multiple of the cross product of the normals for the two planes.

$$
\left\{x=t, y=\frac{5}{11}+\frac{17}{11} t, z=\frac{34}{11}-\frac{1}{11} t\right\}
$$

7. Two planes, π_{1} and π_{2}, intersect in the line with symmetric equation $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{1}$. Plane π_{1} contains the point $\mathrm{A}(2,1,1)$ and plane π_{2} contains the point $\mathrm{B}(1,2,-1)$. Find the scalar equations of planes π_{1} and π_{2}.

$$
\left\{\pi_{1}: 16 x-9 y-5 z-18=0, \quad \pi_{2}: 3 x-2 y+1=0\right\}
$$

8. Find the distance between the line $\ell:(x, y, z)=(-1,2,2)+t(1,-2,5)$ and the plane $\pi: x+3 y+z-12=0$
9. Find the distance between the parallel planes $\begin{aligned} & \pi_{1}: 3 x-4 y-z+15=0 \\ & \pi_{2}: 3 x-4 y-z-3=0\end{aligned}$
10. Find the intersection of the line $\ell: \frac{x-2}{2}=\frac{y-1}{3}=\frac{z+1}{4}$ and the plane $x-2 y+3 z-2=0$.
11. Find the intersection of the line $\ell:\left\{\begin{array}{l}x=2-3 k \\ y=-5-7 k \\ z=3+2 k\end{array}\right.$ and the plane $3 x-y+z-14=0$.
12. Find the intersection of the line $\ell:\left\{\begin{array}{l}x=1-t \\ y=2+t \\ z=3-2 t\end{array}\right.$ and the plane $x-y-z-7=0$.
