\qquad

Recall Exponential Functions:

A function defined by an equation $f(x)=a^{x}$, where a is a real positive number, is called an Exponential Function.
There is a significant difference between the graphs and the properties of the function when $a>1$ and when $0<a<1$.

Case 1: $f(x)=a^{x}, a>1$.

State the following:

Domain:

Range:

Asymptote:

The function is \qquad over the whole domain. I expect the derivative to always be \qquad

Domain:

Range:

Asymptote:

The function is \qquad over the whole domain. I expect the derivative to always be

Exploring the derivative of exponential functions

Use a graphing calculator to complete the following investigations.
For each of the functions below:

1) Sketch the function from its equation (use the default window: Zoom:Standard).
2) Complete the table of values for $x, f(x)$, and $f^{\prime}(x)$ for at least three values of $x(-1,0$, and 1 are suggested but not mandatory choices). Round your answers to 3 decimal places.
3) Calculate the ratio $\frac{f^{\prime}(x)}{f(x)}$.
4) Sketch the tangent line to the graph of $f(x)$ at $x=0$. Determine the slope of the tangent line at $x=0$.
5) Summarize your findings.

Record what you noticed about each of the following:

1. The ratio $\frac{f^{\prime}(x)}{f(x)}$
2. The relationship between $f(x)$, and $f^{\prime}(x)$.
3. The slope of the tangent line at $x=0$.
4. The derivative of the exponential function $f(x)=a^{x}$.

BIG IDEA - Did you notice that:

\checkmark The derivative of an exponential function is an exponential function that has been vertically stretched by a factor of $f^{\prime}(0)$.

Observation: The slope of the tangent at $x=0$ for $y=2^{x}$ was less than one ($f^{\prime}(0)<1$). The slope of the tangent at $x=0$ for $y=3^{x}$ was greater than one $\left(f^{\prime}(0)>1\right)$.

For each function, state the slope of the tangent at $x=0$.

1) $y=2^{x}$
2) $y=3^{x}$
$\left.\frac{d y}{d x}\right|_{x=0}=$ \qquad
$\underbrace{4}$
Is there some function $y=b^{x}$ so that $\left.\frac{d y}{d x}\right|_{x=0}=1$?

Question: Does there exist a function $f(x)=b^{x}$, such that $f^{\prime}(x)=b^{x}$. In other words, is there an exponential function that has $f(x)=f^{\prime}(x)$? If possible, for what value of \boldsymbol{b} will make it so?

For this to be true, we have

$$
\begin{aligned}
& f^{\prime}(x)=f^{\prime}(0) b^{x} \\
&=f^{\prime}(0) f(x) \text { and hence, } f^{\prime}(0)=1 . \\
&=(1) f(x) \\
& \therefore f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{b^{x+h}-b^{x}}{h} \\
& =\lim _{h \rightarrow 0} b^{x} \frac{b^{h}-1}{h} \\
& =b^{x} \lim _{h \rightarrow 0} \frac{b^{h}-1}{h}
\end{aligned}
$$

Use trial and error for values for b and your graphing calculator to find $f(x)=b^{x}$ so that the slope of the tangent at the y -intercept is equal to $1 \underline{\text { or }}$ when $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}=1 \quad \mathrm{~b}=$ \qquad

b	$\lim _{h \rightarrow 0} \frac{b^{h}-1}{h}$

Conclusions: If $f(x)=e^{x}$ then $\left.\frac{d y}{d x}\right|_{x=0}=1$ and hence, $f^{\prime}(x)=e^{x}$ where $e=$ \qquad
$f(x)=e^{x}$ is known as the natural exponential function

Extension: Other occurrences of the irrational constant e

Use a graphing calculator to complete the following table:

Function	Sketch	Horizontal Asymptote	Limit
i) $y=\left(1+\frac{1}{x}\right)^{x}$			$\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=$
ii) $y=(1+x)^{\frac{1}{x}}$			$\lim _{x \rightarrow 0}(1+\boldsymbol{x})^{\frac{1}{x}}=$

iii) Evaluate at least 7 terms of the series $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots$
sum: \qquad

$$
n!=(n)(n-1)(n-2) \ldots(3)(2)(1)
$$

In general finding the derivative of $f(x)=b^{x}$:

Function $f(x)=b^{x}$	Derivative $f^{\prime}(x)=f^{\prime}(0) \cdot b^{x}$	$\ln (b)$	New Expression for
$f(x)=(0.2)^{x}$			$f^{\prime}(x)$
$f(x)=(7)^{x}$			

So if: then:
$f(x)=b^{x} \quad f^{\prime}(x)=b^{x} \ln b$
$g(x)=k\left(b^{x}\right)$
$g^{\prime}(x)=k\left(b^{x}\right) \ln b$

Examples:

1. Calculate the slope of the tangent to $f(x)=2^{x}$ at $x=12.5$
(4015.14)
2. For an exponential function $f(x)$ the ratio $\frac{f^{\prime}(x)}{f(x)}=1.946$, determine the equation of the tangent line to the graph of the function at the point $(0.5,2.646)$.
($y=5.149116 x+0.071442$)

Practice Questions:

1) Determine the equation of the tangent line of $f(x)=4^{x}$ at $x=-3$.
2) Determine the equation of the tangent line of $f(x)=(0.5)^{x}$ at $x=2$.
3) a) Determine the instantaneous rate of change of $g(x)=6^{x}$ at $x=5$, given that the slope of the tangent line at $x=0$ is approximately 1.792 .
b) Determine the instantaneous rate of change of $y=-2\left(6^{x}\right)$ at $x=5$.
4) The half-life of a radioactive material is about 1 year, thus the amount of material left after t years would be given by $A(t)=C(0.5)^{t}$ where C represents the original amount. Given that you have 1 g of the material initially, at what rate is the amount of material decreasing after 5 years? How would your answer change if the original amount of material was 20 g ?
5) Through investigation you have found the rule for the derivative of an exponential function, $f(x)=a^{x}$ and the derivative of $f(x)=C a^{x}$. Use this knowledge to determine the derivative from first principles of $f(x)=2 a^{x}$. Then extend this to determine the derivative from first principles of $f(x)=C a^{x}$, where $C \in \mathfrak{R}$.

Practice Questions:

1) Evaluate (round to 4 decimal places)
a) e^{2}
b) e^{-3}
c) $2 e+3 e$
d) 2^{e}
2) Match each function to the corresponding graph I, II, III, IV. Give (detailed) reasons for each choice.
a) $y=3(e)^{x+1}$
b) $y=-2(e)^{x}$
c) $y=3(e)^{x}$
d) $y=-2(e)^{x}-3$

Derivatives of Exponential Functions

Recall: finding the derivative of $f(x)=b^{x}$

Function $f(x)=b^{x}$	Derivative $f^{\prime}(x)=f^{\prime}(0) \cdot b^{x}$	$\ln (b):$ the slope of tangent of $f(x)=b^{x}$ when $x=0$	New Expression for $f^{\prime}(x)$
$f(x)=(0.2)^{x}$			
$f(x)=(7)^{x}$			

Then we have:

If:

$$
\begin{aligned}
& f(x)=b^{x} \\
& g(x)=k\left(b^{x}\right)
\end{aligned}
$$

then:
$f^{\prime}(x)=b^{x} \ln b$
$g^{\prime}(x)=k\left(b^{x}\right) \ln b$$\quad$ where $f^{\prime}(0)=\ln b$

Consider $f(x)=e^{x}$ and its inverse

1) A table of values is given for $f(x)=e^{x}$. On the grid, graph the following:
a. $\quad f(x)=e^{x}$
b. the line $y=x$
c. the reflection of the graph of $f(x)=e^{x}$ in the line $y=x$. Call it $g(x)$. (Hint: For each point (a, b) on the graph of $f(x)$, the point (b, a) is its reflection image on the line $y=x$.)

Choose appropriate scales for the axes.

\boldsymbol{x}	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
e^{x}					
(to the nearest hundredth)					

2) What is the inverse of the natural exponential function?
3) Since $f(x)=e^{x}$ and $g(x)=\ln x$ are inverse functions, then $f(g(x))=g(f(x))=x$. This is called the Identity Property for inverse functions. Verifying the Identity properties using a graphing calculator
a) Enter the function $f(g(x))=e^{\ln x}$ in the "Y=" editor. Graph it.
b)

On what domain is $e^{\ln x}$ defined?
c) Enter the function $g(f(x))=\ln \left(e^{x}\right)$ in the "Y=" editor.

Input-output diagram of $f \circ g$.
This means that the y values of the function $g(x)$ become the x values of the function $f(x)$. Graph it.
d)

On what domain is $\ln \left(e^{x}\right)$ defined?
e) How do the functions $f(g(x))=e^{\ln x}$ and $g(f(x))=\ln \left(e^{x}\right)$ relate to the function $m(x)=x$?
(Hint: consider the domain)
The derivative of the natural logarithmic function.
Graph of the function $y=\ln x$ using your graphing calculator and complete the table below:

Value of x	Value of $y=\ln x$	Slope of the tangent at the x value.	Value of $\frac{1}{x}$
$\frac{1}{2}$			
3			
5			

Compare the value of the slope of the tangent with the value of $\frac{1}{x}$.
Put it together:

$$
\begin{array}{lll}
\text { If } f(x)=\ln x & \text { then } & f^{\prime}(x)= \\
g(x)=k(\ln x) & & g^{\prime}(x)=
\end{array}
$$

Properties of the natural exponential function and the natural logarithmic function.

The natural exponential function $f(x)=e^{x}$ belongs to the family of exponential functions $f(x)=a^{x}$, where $a>1$. Similarly, the natural logarithmic function $g(x)=\ln x$ belongs to the broader family of logarithmic functions $g(x)=\log _{a} x$ where $a>1$. In fact,

1) $\ln x=\log _{e} x$
2) $\ln e=\log _{e} e=1$
3) $y=\ln x$ is the logarithmic form of $x=e^{y}$ the same way that $y=\log _{a} x$ is the logarithmic form of $x=a^{y}$
4) $y=\ln x$ is the inverse of $y=e^{x}$ the same way that $y=\log _{a} x$ is the inverse of $y=a^{x}$.

As a consequence, $e^{\ln x}=\ln e^{x}=x, x>0$
Recall: Laws of logarithms for any real numbers $a, b, x, y>0 \ldots$ These laws apply to natural logarithms too!

Log of a Product Rule	$\log _{a}(x y)=\log _{a} x+\log _{a} y$			
Log of a Quotient Rule				
Log of a Power Rule	$\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$			
$\log _{a} x^{y}=y \log _{a} x$		\quad	Ln of a Product Rule	$\ln (x y)=\ln x+\ln y$
:---	:---			
Ln of a Quotient Rule	$\ln \left(\frac{x}{y}\right)=\ln x-\ln y$			
Ln of a Power Rule	$\ln x^{y}=y \ln x$			

Practice Exercises:

1. Use your calculator to evaluate each of the following expressions.
a) $\ln 2$
b) $\ln 3$
c) $\ln 5$
d) $\ln 0.5$
e) $\ln 9$
2. Express each of the following as a single logarithm
a) $\ln 5+\ln 8-\ln 4$
b) $\ln 81-\ln 3+\ln 2$
c) $2 \ln x-\frac{1}{4} \ln y$
3. Evaluate $\ln \sqrt{e}$, without the use of technology.
4. Evaluate $\ln \left(\frac{1}{e}\right)+e^{\ln 0.2}-3 \ln \sqrt[5]{e^{3}}$, without the use of technology.
5. State the domain of $y=\ln (x+2)$, then state the equation of the inverse.
6. State the domain of $y=\ln x^{2}$, then state the equation of the inverse.
7. Simplify each of the following
a) $\ln \left(e^{-5 \ln e}\right)$
b) $e^{-\ln (\ln e)}$
c) $\ln \left(e^{-2007 \ln 1}\right)^{2008}$
8. Describe the transformations that $f(x)=\ln x$ has undergone to obtain each of the following functions, then state the equation of the inverse.
a) $y=\ln (2 x)+3$
b) $y=-\ln x-4$
c) $y=0.5 \ln (x-1)+2$
9. What is the slope of the tangent to $y=\ln x$ for $x=7$?
10. Determine the equation of the tangent line of $f(x)=\ln x$ at $x=2$.
