Recall Exponential Functions:

A function defined by an equation $f(x) = a^x$, where *a* is a real positive number, is called an *Exponential Function*.

There is a significant difference between the graphs and the properties of the function when a > 1 and when 0 < a < 1.

Exploring the derivative of exponential functions

Use a graphing calculator to complete the following investigations.

For each of the functions below:

- 1) Sketch the function from its equation (use the default window: Zoom:Standard).
- 2) Complete the table of values for x, f(x), and f'(x) for at least three values of x (-1, 0, and 1 are suggested
- but not mandatory choices). Round your answers to 3 decimal places.
- 3) Calculate the ratio $\frac{f'(x)}{f(x)}$.

4) Sketch the tangent line to the graph of f(x) at x = 0. Determine the slope of the tangent line at x = 0.

5) Summarize your findings.

Record what you noticed about each of the following:

- 1. The ratio $\frac{f'(x)}{f(x)}$
- 2. The relationship between f(x), and f'(x).
- 3. The slope of the tangent line at x = 0.
- 4. The derivative of the exponential function $f(x) = a^x$.

BIG IDEA - Did you notice that:

✓ The derivative of an exponential function is an exponential function that has been vertically stretched by a factor of f'(0).

Observation: The slope of the tangent at x = 0 for $y = 2^x$ was less than one (f'(0) < 1). The slope of the tangent at x = 0 for $y = 3^x$ was greater than one (f'(0) > 1).

For each function, state the slope of the tangent at x = 0.

Question: Does there exist a function $f(x) = b^x$, such that $f'(x) = b^x$. In other words, is there an exponential function that has f(x) = f'(x)? If possible, for what value of *b* will make it so?

Use trial and error for values for *b* and your graphing calculator to find $f(x) = b^x$ so that the slope of the tangent at the y-intercept is equal to 1 or when $f'(0) = \lim_{h \to 0} \frac{b^h - 1}{h} = 1$ b =_____

b	$\lim_{h\to 0}\frac{b^h-1}{h}$

Conclusions:	If	$f(x) = e^x$	then	dy	=1	and hence,	$f'(x) = e^x$	where $e =$	
		• • •		$dx _{x=0}$			•		

 $f(x) = e^x$ is known as the natural exponential function

Extension: Other occurrences of the irrational constant *e*

Use a graphing calculator to complete the following table:

In general finding the derivative of $f(x) = b^x$:

Function $f(x) = b^x$	Derivative $f'(x) = f'(0) \cdot b^x$	$\ln(b)$	New Expression for $f'(x)$
$f(x) = (0.2)^x$			
$f(x) = (7)^x$			

So if: $f(x) = b^x$ then: $f'(x) = b^x \ln b$ $g(x) = k(b^x)$ $g'(x) = k(b^x) \ln b$ Examples:

1. Calculate the slope of the tangent to $f(x) = 2^x$ at x = 12.5 (4015.14)

2. For an exponential function f(x) the ratio $\frac{f'(x)}{f(x)} = 1.946$, determine the equation of the tangent line to the graph of the function at the point (0.5, 2.646). (y = 5.149116x + 0.071442)

Practice Questions:

1) Determine the equation of the tangent line of $f(x) = 4^x$ at x = -3.

2) Determine the equation of the tangent line of $f(x) = (0.5)^x$ at x = 2.

3) a) Determine the instantaneous rate of change of $g(x) = 6^x$ at x = 5, given that the slope of the tangent line at x = 0 is approximately 1.792.

b) Determine the instantaneous rate of change of $y = -2(6^x)$ at x = 5.

4) The half-life of a radioactive material is about 1 year, thus the amount of material left after *t* years would be given by $A(t) = C(0.5)^t$ where C represents the original amount. Given that you have 1 g of the material initially, at what rate is the amount of material decreasing after 5 years? How would your answer change if the original amount of material was 20 g?

5) Through investigation you have found the rule for the derivative of an exponential function, $f(x) = a^x$ and the derivative of $f(x) = Ca^x$. Use this knowledge to determine the derivative from first principles of $f(x) = 2a^x$. Then extend this to determine the derivative from first principles of $f(x) = Ca^x$, where $C \in \Re$.

Practice Questions:

1) Evaluate (round to 4 decimal places) a) e^2 b) e^{-3}

d) 2^{e}

2) Match each function to the corresponding graph I, II, III, IV. Give (detailed) reasons for each choice.

c) 2e + 3e

Derivatives of Exponential Functions

Function	Derivative	$\ln(b)$: the slope of	New Expression for
$f(x) = b^x$	$f'(x) = f'(0) \cdot b^x$	tangent of $f(x) = b^x$	f'(x)
		when $x = 0$	
$f(x) = (0.2)^x$			
$f(x) = (7)^x$			

Recall: finding the derivative of $f(x) = b^x$

Then we have:

then:

If:	then:	
$f(x) = b^x$	$f'(x) = b^x \ln b$	where $f'(0) = \ln h$
$g(x) = k(b^x)$	$g'(x) = k(b^x) \ln b$	where $f(0) = mb$

Consider $f(x) = e^x$ and its inverse

1) A table of values is given for $f(x) = e^x$. On the grid, graph the following:

- a. $f(x) = e^x$
- b. the line y = x
- c. the reflection of the graph of $f(x) = e^x$ in the line y = x. Call it g(x). (Hint: For each point (a, b) on the graph of f(x), the point (b, a) is its reflection image on the line y = x.)

Choose appropriate scales for the axes.

x	-2	-1	0	1	2
e^{x}	0.14	0.37	1	2.72	7.39
(to the nearest hundredth)					

- 3) Since $f(x) = e^x$ and $g(x) = \ln x$ are inverse functions, then f(g(x)) = g(f(x)) = x. This is called the Identity Property for inverse functions. Verifying the Identity properties using a graphing calculator
 - a) Enter the function $f(g(x)) = e^{\ln x}$ in the "Y=" editor. Graph it.

b) On what domain is $e^{\ln x}$ defined?

c) Enter the function $g(f(x)) = \ln(e^x)$ in the "Y=" editor. Graph it.

This means that the y values of the function g(x)become the x values of the function f(x).

d) On what domain is $\ln(e^x)$ defined?

e) How do the functions $f(g(x)) = e^{\ln x}$ and $g(f(x)) = \ln(e^x)$ relate to the function m(x) = x? (Hint: consider the domain)

(Hint: consider the domain)

The derivative of the natural logarithmic function.

Graph of the function $y = \ln x$ using your graphing calculator and complete the table below:

Value of x	Value of $y = \ln x$	Slope of the tangent at the x value.	Value of $\frac{1}{x}$
$\frac{1}{2}$			
3			
5			

Compare the value of the slope of the tangent with the value of $\frac{1}{2}$.

Put it together:

If $f(x) = \ln x$	then	f'(x) =
$g(x) = k(\ln x)$		g'(x) =

Properties of the natural exponential function and the natural logarithmic function.

The natural exponential function $f(x) = e^x$ belongs to the family of exponential functions $f(x) = a^x$, where a > 1. Similarly, the natural logarithmic function $g(x) = \ln x$ belongs to the broader family of logarithmic functions $g(x) = \log_a x$ where a > 1. In fact,

1) $\ln x = \log_e x$

 $2) \ln e = \log_e e = 1$

3) $y = \ln x$ is the logarithmic form of $x = e^{y}$ the same way that $y = \log_{a} x$ is the logarithmic form of $x = a^{y}$

4) $y = \ln x$ is the inverse of $y = e^x$ the same way that $y = \log_a x$ is the inverse of $y = a^x$.

As a consequence, $e^{\ln x} = \ln e^x = x$, x > 0

<u>Recall</u>: Laws of logarithms for any real numbers *a*, *b*, *x*, y > 0 ... These laws apply to natural logarithms too!

	$\log_a(xy) = \log_a x + \log_a y$		$\ln(xy) = \ln x + \ln y$
Log of a Product Rule	(\mathbf{x})	Ln of a Product Rule	(x)
Log of a Quotient Rule	$\log_{a}\left(\frac{x}{y}\right) = \log_{a} x - \log_{a} y$	Ln of a Quotient Rule	$\ln\left(\frac{-}{y}\right) = \ln x - \ln y$
Log of a Power Rule	$\log_a x^y = y \log_a x$	Ln of a Power Rule	$\ln x^{y} = y \ln x$

Practice Exercises:

1. Use your calculator to evaluate each of the following expressions.a) ln 2b) ln 3c) ln 5d) ln 0.5e) ln 9

2. Express each of the following as a single logarithm

a) $\ln 5 + \ln 8 - \ln 4$ b) $\ln 81 - \ln 3 + \ln 2$ c) $2 \ln x - \frac{1}{4} \ln y$

3. Evaluate $\ln \sqrt{e}$, without the use of technology.

4. Evaluate $\ln\left(\frac{1}{e}\right) + e^{\ln 0.2} - 3\ln \sqrt[5]{e^3}$, without the use of technology.

5. State the domain of $y = \ln(x+2)$, then state the equation of the inverse.

6. State the domain of $y = \ln x^2$, then state the equation of the inverse.

7. Simplify each of the following

a)
$$\ln(e^{-5\ln e})$$
 b) $e^{-\ln(\ln e)}$ c) $\ln(e^{-2007 \ln 1})^{2008}$

8. Describe the transformations that $f(x) = \ln x$ has undergone to obtain each of the following functions, then state the equation of the inverse.

a)
$$y = \ln(2x) + 3$$
 b) $y = -\ln x - 4$ c) $y = 0.5\ln(x-1) + 2$

9. What is the slope of the tangent to $y = \ln x$ for x = 7?

10. Determine the equation of the tangent line of $f(x) = \ln x$ at x = 2.