Properties of the Dot Product

Let $\vec{u}=\left(u_{1}, u_{2}, u_{3}\right), \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$ and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$
Prove: $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
Proof:

Algebraic

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \\
& =v_{1} u_{1}+v_{2} u_{2}+v_{3} u_{3} \\
& =\vec{v} \cdot \vec{u}
\end{aligned}
$$

$$
n
$$

Prove: $a(\vec{u} \cdot \vec{v})=(a \vec{u}) \cdot \vec{v}=\vec{u} \cdot(a \vec{v}), a \in \mathfrak{R}$
Proof:

$$
\begin{aligned}
a(\vec{u} \cdot \vec{v}) & =a(\underline{\text { Algebraic }} \\
& \left.=a u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\
& =\left(a u_{2}, a v_{2}+a u_{3} v_{3}, a u_{3}\right) \cdot\left(v_{1}, v_{2}, v_{3}\right) \\
& =(a \vec{u}) \cdot \vec{v}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Geometric } \\
& \begin{aligned}
\vec{u} \cdot \vec{v} & =|\vec{u}||\vec{v}| \cos \theta \\
& =|\vec{v}||\vec{u}| \cos \theta \\
& =\vec{v} \cdot \vec{u}
\end{aligned}
\end{aligned}
$$

Geometric

$$
\begin{aligned}
a(\vec{u} \cdot \vec{v}) & =a|\vec{u}||\vec{v}| \cos \theta \\
& =|a \vec{u} \| \vec{v}| \cos \theta \\
& =(a \vec{u}) \cdot \vec{v}
\end{aligned}
$$

Prove: $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$
Proof:

$$
\begin{aligned}
\vec{u} \cdot(\vec{v}+\vec{w}) & =\left(u_{1}, u_{2}, u_{3}\right) \cdot\left(v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right) \\
& =u_{1} \cdot\left(v_{1}+w_{1}\right)+u_{2} \cdot\left(v_{2}+w_{2}\right)+u_{3} \cdot\left(v_{3}+w_{3}\right) \\
& =\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)+\left(u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}\right) \\
& =\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}
\end{aligned}
$$

Prove: $\vec{u} \cdot \vec{u}=|\vec{u}|^{2}$
Proof:

$$
\begin{aligned}
\vec{u} \cdot \vec{u} & =\left(u_{1}, u_{2}, u_{3}\right) \cdot\left(u_{1}, u_{2}, u_{3}\right) \\
& =u_{1}^{2}+u_{2}^{2}+u_{3}^{2} \\
& =|\vec{u}|^{2}
\end{aligned}
$$

Geometric

The angle between \vec{u} and itself is 0° and $\cos 0^{\circ}=1$, so that

$$
\begin{aligned}
\vec{u} \cdot \vec{u} & =|\vec{u} \| \vec{u}| \cos 0^{\circ} \\
& =|\vec{u}|^{2}
\end{aligned}
$$

Prove: $\vec{u} \cdot \vec{v}=0$ iff $\vec{u} \perp \vec{v}$

Proof:

If \vec{u} and \vec{v} are perpendicular, then the angle between them is 90° and, since $\cos 90^{\circ}=0$, we have $\vec{u} \cdot \vec{v}=|\vec{u} \| \vec{v}| \cos 90^{\circ}$.
Conversely, if $\vec{u} \cdot \vec{v}=0$, then $|\vec{u} \| \vec{v}| \cos \theta=0$, where θ is the angle between the vectors.
Since \vec{u} and \vec{v} are non-zero, we must have $\cos \theta=0$ and therefore $\theta= \pm 90^{\circ}$.

More Applications of Dot Product - Projections

Finding the projection of one vector onto another vector.
To obtain a projection "drop" a vector perpendicular onto another vector.

Ex

This projection is a vector in the direction of \vec{a} so it is a scalar multiple of \vec{a}. The magnitude of the projection, $\left|\operatorname{Pr} o j_{\vec{a}} \vec{v}\right|$, is given by $|\vec{v}| \cos \theta$
$\begin{aligned}\left|\operatorname{Pr} o j_{\vec{a}} \vec{v}\right| & =|\vec{v}| \cos \theta \longleftarrow \text { Recall from dot product: } \cos \theta=\frac{\vec{a} \bullet \vec{v}}{|\vec{a}||\vec{v}|} \\ & =|\vec{v}| \frac{\vec{a} \bullet \vec{v}}{}\end{aligned}$

$$
=|\vec{v}| \frac{\vec{a} \bullet \vec{v}}{|\vec{a}||\vec{v}|}
$$

$\therefore \operatorname{Pr} o j_{\vec{a}} \vec{v}=\frac{\vec{a} \bullet \vec{v}}{|\vec{a}|} \hat{a} \rightarrow \quad \rightarrow \quad($ in terms of $\hat{a})$

Scalar multiple that is the size of the projection.

$$
\left.\begin{array}{rl}
\operatorname{Pr}_{j_{\vec{a}}} \vec{v} & =\frac{\vec{a} \bullet \vec{v}}{|\vec{a}|}\left(\frac{\vec{a}}{|\vec{a}|}\right) \\
& =\frac{\vec{a} \bullet \vec{v}}{|\vec{a}|^{2}} \vec{a}
\end{array} \quad \text { (in terms of } \vec{a}\right)
$$

Ex 1 Given $\vec{w}=(-3,5,2) \quad \vec{z}=(2,4,-3)$. Find $\operatorname{Pr} o j_{\vec{z}} \vec{w}$ as an algebraic vector. $\left(\frac{16}{29}, \frac{32}{29}, \frac{-24}{29}\right)$

Ex 2 Find the $\operatorname{Pr} o j_{\bar{z}} \vec{w}$.

Work
Ex. If a 15 N force, acting in the direction of $\vec{v}=(1,1,1)$, moves an object from $\mathrm{P}(-2,1,-4)$ to $Q(5,6,-1)$, calculate the work done. The distance is in meters.

Homework on dot product and Projections

1. Given vectors \vec{u} and \vec{v} as shown, find
$\operatorname{Pr} \operatorname{oj}(\vec{u}$ onto $\vec{v}) \quad($ in terms of $\hat{v})$
2. Given $\begin{aligned} & \vec{y}=2 \hat{i}+2 \hat{j}, \quad \vec{x}=(-1,4), \quad \vec{z}=(3,-2) \\ & A(-1,-3), \quad B(-3,-2)\end{aligned}$

Find: $\quad \operatorname{Pr} o j_{\overrightarrow{A B}} \vec{x}$

$$
A(-1,-3), \quad B(-3,-2)
$$

$$
\left(\frac{-12}{5}, \frac{6}{5}\right)
$$

3. Given $\vec{u}=(5,-4)$ and $\vec{v}=(-3,1)$, find the $\operatorname{Pr} o j(\vec{u}$ onto $\vec{v})$ as an algebraic vector. $\left\{\left(\frac{57}{10}, \frac{-19}{10}\right)\right\}$
4. Find the work done if a force of 45 N in the direction of $\vec{r}=(4,-7)$ moves an object from $\mathrm{G}(1,6)$ to $\mathrm{H}(7,3)$.
\{251.1 Joules \}
5. Given $\vec{y}=2 \hat{i}+2 \hat{j}+7 \hat{k}, \quad \vec{x}=(-1,4,6), \quad \vec{z}=(3,-2,-3), \quad A(-1,-3,5), \quad B(-3,-2,4)$
Find $\operatorname{Pr} o j_{\overrightarrow{A B}} \vec{x}$
6. Find the work done by the force $\vec{f}=(-1,3,6)$, which moves an object from $\mathrm{P}(3,1,-2)$ to $\mathrm{Q}(4,5,1)$.
7. Find the work done if a force of 45 N in the direction of $\vec{r}=(4,-7,-2)$ moves an object from $\mathrm{G}(1,6,5)$ to $\mathrm{H}(7,3,7)$.
\{222.1 Joules \}
8. Given $\vec{u}=(2,-1,6)$ and $\vec{v}=(1,3-4)$, find the $\operatorname{Pr} o j(\vec{v}$ onto $\vec{u})$ as an algebraic vector. $\left\{\left(\frac{-50}{41}, \frac{25}{41}, \frac{-150}{41}\right)\right\}$
9. For $\vec{u}=(1,5,8)$ and $\vec{v}=(-1,3,-2)$, verify that:
a) $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$
b) $\vec{u} \cdot \vec{u}=|\vec{u}|^{2}$ and $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}$
c) $(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})=|\vec{u}|^{2}-|\vec{v}|^{2}$
d) $(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=|\vec{u}|^{2}+2 \vec{u} \cdot \vec{v}+|\vec{v}|^{2}$
e) $2(\vec{u} \cdot \vec{v})=(2 \vec{u}) \cdot \vec{v}=\vec{u} \cdot(2 \vec{v})$
10. If $\vec{u}=(2,2,-1), \vec{v}=(3,-1,0)$ and $\vec{w}=(1,7,8)$, verify that $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$
