Properties of the Dot Product

Let $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ and $\vec{w} = (w_1, w_2, w_3)$

Prove: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ Proof:

$$\underline{Algebraic} \qquad \underline{Geometric} \\ \vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \qquad \vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta \\ = v_1 u_1 + v_2 u_2 + v_3 u_3 \qquad = |\vec{v}| |\vec{u}| \cos \theta \\ = \vec{v} \cdot \vec{u} \qquad = \vec{v} \cdot \vec{u}$$

Prove: $a(\vec{u} \cdot \vec{v}) = (a\vec{u}) \cdot \vec{v} = \vec{u} \cdot (a\vec{v}), a \in \Re$ Proof:

Prove:
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

Proof:
 $\vec{u} \cdot (\vec{v} + \vec{w}) = (u_1, u_2, u_3) \cdot (v_1 + w_1, v_2 + w_2, v_3 + w_3)$
 $= u_1 \cdot (v_1 + w_1) + u_2 \cdot (v_2 + w_2) + u_3 \cdot (v_3 + w_3)$
 $= (u_1 v_1 + u_2 v_2 + u_3 v_3) + (u_1 w_1 + u_2 w_2 + u_3 w_3)$
 $= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$

Prove: $\vec{u} \cdot \vec{u} = |\vec{u}|^2$ Proof:

> Geometric <u>Algebraic</u> $\vec{u} \cdot \vec{u} = (u_1, u_2, u_3) \cdot (u_1, u_2, u_3)$ The angle between \vec{u} and itself is 0° and $\cos 0^{\circ} = 1$, so that $=u_1^2+u_2^2+u_3^2$ $\vec{u} \cdot \vec{u} = |\vec{u}| |\vec{u}| \cos 0^\circ$ $=\left|\vec{u}\right|^2$

Prove: $\vec{u} \cdot \vec{v} = 0$ iff $\vec{u} \perp \vec{v}$ Proof:

 $=\left|\vec{u}\right|^2$

If \vec{u} and \vec{v} are perpendicular, then the angle between them is 90° and, since $\cos 90^\circ = 0$, we have $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos 90^\circ$.

Conversely, if $\vec{u} \cdot \vec{v} = 0$, then $|\vec{u}| |\vec{v}| \cos \theta = 0$, where θ is the angle between the vectors.

Since \vec{u} and \vec{v} are non-zero, we must have $\cos \theta = 0$ and therefore $\theta = \pm 90^{\circ}$.

Finding the **projection** of one vector onto another vector.

To obtain a projection "drop" a vector perpendicular onto another vector.

This projection is a vector in the direction of \vec{a} so it is a scalar multiple of \vec{a} . The magnitude of the projection, $|\Pr{oj_{\vec{a}} \vec{v}}|$, is given by $|\vec{v}| \cos \theta$

<u>Work</u>

Ex. If a 15 N force, acting in the direction of $\vec{v} = (1,1,1)$, moves an object from P(-2, 1,-4) to Q(5, 6,-1), calculate the work done. The distance is in meters.

Homework on dot product and Projections

1. Given vectors \vec{u} and \vec{v} as shown, find

3. Given $\vec{u} = (5,-4)$ and $\vec{v} = (-3,1)$, find the Pr $oj(\vec{u} \text{ onto } \vec{v})$ as an algebraic vector. $\left\{\left(\frac{57}{10}, \frac{-19}{10}\right)\right\}$

4. Find the work done if a force of 45 N in the direction of $\vec{r} = (4, -7)$ moves an object from G(1,6) to H(7,3). {251.1 Joules}

5. Given $\vec{y} = 2\hat{i} + 2\hat{j} + 7\hat{k}$, $\vec{x} = (-1,4,6)$, $\vec{z} = (3,-2,-3)$, A(-1,-3,5), B(-3,-2,4)

Find $\Pr{oj_{\overrightarrow{AB}}} \vec{x}$

6. Find the work done by the force $\vec{f} = (-1,3,6)$, which moves an object from P(3, 1,-2) to Q(4, 5,1). { 29 Joules}

 $\{0\}$

- 7. Find the work done if a force of 45 N in the direction of $\vec{r} = (4,-7,-2)$ moves an object from G(1,6,5) to H(7,3,7). {222.1 Joules }
- 8. Given $\vec{u} = (2, -1, 6)$ and $\vec{v} = (1, 3 4)$, find the $\Pr{oj(\vec{v} \text{ onto } \vec{u})}$ as an algebraic vector. $\left\{ \left(\frac{-50}{41}, \frac{25}{41}, \frac{-150}{41} \right) \right\}$

9. For
$$\vec{u} = (1,5,8)$$
 and $\vec{v} = (-1,3,-2)$, verify that:
a) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
b) $\vec{u} \cdot \vec{u} = |\vec{u}|^2$ and $\vec{v} \cdot \vec{v} = |\vec{v}|^2$
c) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = |\vec{u}|^2 - |\vec{v}|^2$
d) $(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = |\vec{u}|^2 + 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$
e) $2(\vec{u} \cdot \vec{v}) = (2\vec{u}) \cdot \vec{v} = \vec{u} \cdot (2\vec{v})$

10. If $\vec{u} = (2,2,-1)$, $\vec{v} = (3,-1,0)$ and $\vec{w} = (1,7,8)$, verify that $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$