

The slope of the tangent to a curve at a point is defined to be the derivative. By calculating the derivative of a curve at many points, a new function can be obtained. By finding the equation that will fit the points, the derivative of $f(x) = \sin x$ and $f(x) = \cos x$ can be discovered.

	А	В	С	D	Е	F	G	Н		J	K	L	М
X (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
f'(x)													

2) The graph of $f(x) = 3\sin x$ is shown on the right.

- a) Complete the chart below (to 3 decimal places) for the row of f'(x) by entering $f(x) = 3 \sin x$ into DESMOS and then using the f'(x) notiation and evaluating f'(x) for each value of x.
- b) Draw the scatter plot in the grid on the right and determine f'(x).

$$f'(x) =$$

	Α	В	С	D	E	F	G	Н	I	J	K	L	Μ
<i>x</i> (radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
f'(x)													

Practice to be completed for homework	Answers				
1) Determine and interpret $f\left(\frac{3\pi}{4}\right)$ and $f'\left(\frac{3\pi}{4}\right)$ for $f(x) = \sin x$. (x is in radians!)	$f\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}, \ f'\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$				
 2) An object moves so that at <i>t</i> seconds its position <i>s</i>, in meters, is found using s(t) = 5 · cos t. a) For what values of <i>t</i> does the object change direction? b) What is its maximum velocity? 	a) every π seconds, starting at 0 seconds b) 5m/s				
3) Are there any values of x , $0 \le x \le 2\pi$, for which tangent lines to $f(x) = \sin x$ and $g(x) = \cos x$ are parallel? If so, find the values.	$\frac{3\pi}{4}, \frac{7\pi}{4}$				
4) Find the instantaneous rate of change of $y = \sin x$ at $x = \frac{7\pi}{6}$.	$-\frac{\sqrt{3}}{2}$				
5) Find the equation of the tangent to $y = \cos x$ at $x = \frac{\pi}{2}$.	$y = -x + \frac{\pi}{2}$				
6) Find the slope of the tangent to the curve $y = 3\cos x$ at $x = \frac{5\pi}{6}$.	$-\frac{3}{2}$				