Given the vector \vec{u} , \vec{u} can be moved until its initial point is on the origin. Its endpoint will be at some point P with coordinates (a, b).

If we adopt a convention where the west-east direction is written first, then we will have the following:

$$[W\theta N] = (-,+) \qquad [E\theta N] = (+,+)$$
$$[W\theta S] = (-,-) \qquad [E\theta S] = (+,-)$$

Example: Express $\vec{v} = (-3, -2)$ as a geometric vector.

$$|\vec{v}| = \sqrt{(-3)^2 + (-2)^2} \qquad \theta = \tan^{-1}\left(\frac{2}{3}\right)$$
$$= \sqrt{13} \qquad \approx 33.7^{\circ} \qquad 3^{rd} \text{ quad so (W and S)}$$

 $\vec{v} = \sqrt{13} [W33.7^{\circ}S]$

Vectors can be expressed using unit vector notation if we define $\hat{i} = (1,0)$ and $\hat{j} = (0,1)$ to be the unit vectors of length one which lie on the x- and y-axis

The vector (-3,-2) can be expressed in unit vector notation as

Consider the vector $15m[N25^{\circ}W]$

Example: Given the algebraic vector $\overrightarrow{OP} = (-3, 7)$,

a) Sketch the corresponding position vector on the Cartesian Plane

- b) Express the vector as a geometric vector.
- c) Express the vector in unit vector notation.