Relative Velocity

Consider the situation indicated in the diagram involving a car travelling at $90 \mathrm{~km} / \mathrm{h}$, a bus travelling at $95 \mathrm{~km} / \mathrm{h}$ and a limousine travelling at $125 \mathrm{~km} / \mathrm{h}$.

Bus
WEST

WEST
EAST

Car

Find the velocity of the limousine relative to the car.
Find the velocity of the car relative to the limousine.
Find the velocity of the car relative to the bus.
Find the velocity of the bus relative to the car.
Find the velocity of the limousine relative to the bus.
Find the velocity of the bus relative to the limousine.
Relative Velocity: The velocity of one object with respect to (w.r.t) another object (as if it were at rest)

Consider:

$>$ Emmerson is standing(still) on the sidewalk
$>$ Nick is driving on the street at $60 \mathrm{~km} / \mathrm{h}$ [N]
$>$ Serena is biking on the street $20 \mathrm{~km} / \mathrm{h}$ [S]
$>$ Andrew is running along the street at $10 \mathrm{~km} / \mathrm{h}$ [N]

Emmerson sees Nick going $60 \mathrm{~km} / \mathrm{h}$ [N] but Nick sees Emmerson moving south at $60 \mathrm{~km} / \mathrm{h}$
Relative velocity
Andrew sees Nick driving at $50 \mathrm{~km} / \mathrm{h}[\mathrm{N}]$ Nick sees Andrew running at $50 \mathrm{~km} / \mathrm{h}$ [S]

Serena sees Nick driving at $80 \mathrm{~km} / \mathrm{h}$ [N] Nick sees Serena biking at $80 \mathrm{~km} / \mathrm{h}[\mathrm{S}] \leftarrow$

$$
\begin{aligned}
& \overrightarrow{\mathcal{V}}_{\text {Serena relative to Nick }} \\
& =\overrightarrow{\boldsymbol{V}}_{\text {Serena }}-\overrightarrow{\boldsymbol{v}}_{\text {Nick }} \\
& =-20-(+60) \\
& =-80=80 \mathrm{~km} / \mathrm{h}[\mathrm{~S}]
\end{aligned}
$$

In general: Velocity of A relative to $\mathrm{B}=\overrightarrow{\mathcal{V}}_{A}-\overrightarrow{\mathcal{V}}_{B}$

Ex. A ship is travelling at 15 knots in the direction $S 40^{\circ} \mathrm{W}$. A submarine 8 nautical miles due west of the ship is travelling at 9 knots at $S 55^{\circ} E$. Find the velocity of the ship relative to the submarine? Does the ship pass in front of or behind the submarine?

Airplane situation

In these questions you will be given two of the vectors and asked to find the third.
Ex. A pilot steers her plane at $N 30^{\circ} E$ with an airspeed of $545 \mathrm{~km} / \mathrm{h}$. If the wind is $85 \mathrm{~km} / \mathrm{h}$ from $S 20^{\circ} E$, what is the track and groundspeed of the plane?

Vector Operations

1. Consider the situation indicated in the diagram involving a car travelling at $110 \mathrm{~km} / \mathrm{h}$, a bus travelling at $95 \mathrm{~km} / \mathrm{h}$ and a limousine travelling at $125 \mathrm{~km} / \mathrm{h}$.

EAST
2. A pilot sets her plane at a heading of $N 24^{\circ} \mathrm{W}$ with a airspeed of $625 \mathrm{~km} / \mathrm{h}$. The pilot is blown off course by a wind from $N 84^{\circ} E$ at $80 \mathrm{~km} / \mathrm{h}$, determine the groundspeed and the track of the plane?
$\left\{654.12 \mathrm{~km} / \mathrm{h}\right.$ at $\left.\mathrm{N} 30.58^{\circ} \mathrm{W}\right\}$
3. A pilot heads her plane at $N W$ with an airspeed of $500 \mathrm{~km} / \mathrm{h}$. If the actual groundspeed of the plane is $480 \mathrm{~km} / \mathrm{h}$ at a track of $N 35^{\circ} \mathrm{W}$ determine the windspeed and the wind direction.
$\left\{87.7 \mathrm{~km} / \mathrm{h}\right.$ from $\left.S 63.1^{\circ} \mathrm{W}\right\}$
4. An ocean cruiser is travelling at 20 knots in the direction $S 80^{\circ} \mathrm{W}$. A sailing boat 8 nautical miles due west of the ocean cruiser is travelling at 7 knots at $S 40^{\circ} E$. Find the velocity of the ocean cruiser relative to the sailboat? Does the ocean liner pass in front of or behind the sailboat?
$\left\{24.3\right.$ knots at $W 4.4^{\circ} N$, OC passes behind SB $\}$

