1. 2) A plane is defined by the points $\mathrm{A}(-1,-3,5), \mathrm{B}(-2,-4,1)$ and $\mathrm{C}(-6,-4,-1)$
a) give two direction vectors for this plane
b) find a normal for this plane

$$
\begin{aligned}
&\{\overrightarrow{A B}=(-1,-1,-4) \overrightarrow{A C}=(-5,-1,-6)\} \\
&\{\vec{n}=(2,14,-4)\}
\end{aligned}
$$

c) state the vector equation for this plane
$\{(\mathrm{x}, \mathrm{y}, \mathrm{z})=(-1,-3,5)+\mathrm{k}(-1,-1,-4)+\mathrm{m}(-5,-1,-6)\}$
d) state the parametric equations for this plane
e) state the scalar equation for this plane
$\{x+7 y-2 z+32=0\}$
2. Give parametric equations for the plane $\pi: 5 x-3 y+2 z-6=0$.
\{many answers \}
3. Does the point $\mathrm{P}(4,5,-3)$ lie on the plane $\pi:(x, y, z)=(4,1,6)+t(3,-2,1)+k(-6,6,-1)$
4. Determine a vector equation of each of the following planes.
a) The plane through the point $G(-4,5,1)$ parallel to the vectors $(-3,-5,3)$ and $(2,-1,-5)$
b) The plane containing the two intersecting lines $\vec{r}=(4,3,7)+t(1,4,3)$ and $\vec{r}=(-1,-4,6)+s(-1,-1,3)$.
c) The plane containing the line $\vec{r}=(-3,4,6)+t(-5,-2,3)$ and the point $\mathrm{A}(8,3,5)$.
d) The plane containing the two parallel lines $\vec{r}=(0,1,3)+t(-6,-3,6)$ and $\vec{r}=(-4,5,-4)+s(4,2,-4)$.
e) The plane containing $\mathrm{P}(2,6,-5), \mathrm{Q}(-3,1,-4)$ and $\mathrm{R}(6,-2,2)$

$$
\begin{array}{ll}
\text { a) } \vec{r}=(-4,5,1)+s(-3,-5,3)+t(2,-1,-5) & \text { b) } \vec{r}=(4,3,7)+s(1,4,3)+t(-1,-1,3) \\
\text { c) } \vec{r}=(8,3,5)+s(5,2,-3)+t(11,-1,-1) & \text { d) } \vec{r}=(0,1,3)+s(2,1,-2)+t(4,-4,7) \\
\text { e) } \vec{r}=(2,6,-5)+s(5,5,-1)+t(4,-8,7) &
\end{array}
$$

5. Determine the parametric equations of the planes
a) parallel to the xz plane containing the point $\mathrm{J}(6,4,2)$
b) the plane containing the origin and the points $\mathrm{D}(3,3,3)$ and $\mathrm{E}(8,-1,-1)$
c) the plane containing the x axis and the point $\mathrm{J}(-1,-4,7)$
$\left\{\begin{array}{lll}\{a) & x=6+s, y=4, z=2+t & \text { b) } x=s+8 t, y=s-t, z=s-t\end{array} \quad\right.$ c) $\left.x=s-t, y=-4 t, z=7 t\right\}$
6. What is the scalar equation of the plane containing the x axis and the point $T(4,-2,1) ? \quad\{y+2 z=0\}$
7. Find the scalar equation of the plane that contains the intersecting lines

$$
\frac{x-2}{1}=\frac{y}{2}=\frac{z+3}{3} \text { and } \frac{x-2}{-3}=\frac{y}{4}=\frac{z+3}{2} .
$$

8. Find the scalar equation of the plane that contains the points
a) $\mathrm{G}(1,1,-1), \mathrm{H}(1,2,3)$ and $\mathrm{I}(3,-1,2)$
b) $\mathrm{J}(2,-2,4), \mathrm{K}(1,1,-4)$ and $\mathrm{L}(3,1,-6)$
c) $\mathrm{A}(1,1,1), \mathrm{B}(-1,1,1)$ and $\mathrm{C}(2,1,2)$

$$
\begin{aligned}
& \{11 x+8 y-2 z-21=0\} \\
& \{x+3 y+z=0\} \\
& \{y-1=0\}
\end{aligned}
$$

