Equations of Planes

Minimum requirements to define a plane:
1) 3 non-collinear points
2) one point on the plane and two non-collinear direction vectors for the plane
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These last three equations are called the vector equation of a plane in space (there are an

infinite number of representations). You could use any d or & and any P, . The scalar k and
[ are called parameters.

If you equate the components, we get:

X=X, +kd, +lg
y=Y,tkd, +le
Z=12,+kd, +le,

which are called the parametric equations of a plane in three space.



Definition: A normal vector for a plane is a vector
plane.
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nx+ny+nz+D =0
Ax+By+Cz+D =0

A= (nl,nz,nS) which is perpendicular to the
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So this last equation is the scalar equation of a plane (or Cartesian) in three space. Note that

A=(AB,C)

Ex1. Find vector, parametric and scalar equations of the plane through A(1,1,2), B(-1,3,4),

C(0, -1,5). Does Q(-1,1,3) lie on the plane?

Ex2. Given /,:T, =(34,3)+k(2-15) and ¢, :r, = (-9,8,-6)+ m(- 6,3-15), find the vector
equation of the plane containing these two parallel lines.
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