Equations of Planes

Minimum requirements to define a plane:

1) 3 non-collinear points

2) one point on the plane and two non-collinear direction vectors for the plane

These last three equations are called the vector equation of a plane in space (there are an infinite number of representations). You could use any \vec{d} or \vec{e} and any \vec{p}_{0}. The scalar k and l are called parameters.

If you equate the components, we get:

$$
\left\{\begin{array}{l}
x=x_{0}+k d_{1}+l e_{1} \\
y=y_{0}+k d_{2}+l e_{2} \\
z=z_{0}+k d_{3}+l e_{3}
\end{array}\right.
$$

which are called the parametric equations of a plane in three space.

Definition: A normal vector for a plane is a vector $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$ which is perpendicular to the plane.

So.......

$$
\overrightarrow{P_{0} P} \perp \vec{n}
$$

$$
\overrightarrow{P_{0} P} \cdot \vec{n}=0
$$

$$
\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \cdot\left(n_{1}, n_{2}, n_{3}\right)=0
$$

$$
n_{1}\left(x-x_{0}\right)+n_{2}\left(y-y_{0}\right)+n_{3}\left(z-z_{0}\right)=0
$$

$$
n_{1} x+n_{2} y+n_{3} z+\left(-n_{1} x_{0}-n_{2} y_{0}-n_{3} z_{0}\right)=0
$$

$$
n_{1} x+n_{2} y+n_{3} z+D=0
$$

$$
A x+B y+C z+D=0
$$

So this last equation is the scalar equation of a plane (or Cartesian) in three space. Note that $\vec{n}=(A, B, C)$

Ex1. Find vector, parametric and scalar equations of the plane through $A(1,1,2), B(-1,3,4)$, $C(0,-1,5)$. Does $\mathrm{Q}(-1,1,3)$ lie on the plane?

Ex2. Given $\ell_{1}: \vec{r}_{1}=(3,4,3)+k(2,-1,5)$ and $\ell_{2}: r_{2}=(-9,8,-6)+m(-6,3,-15)$, find the vector equation of the plane containing these two parallel lines.

