Lines in Two Space

Definition: A direction vector for a line is a vector parallel to the line. A line with direction vector $\vec{d}=\left(d_{1}, d_{2}\right)$ has slope $m=\frac{d_{2}}{d_{1}}$.

RECALL: Parallel (collinear) vectors can be written as scalar multiples of each other.
To get the equation of a line, we need two points (because two points make a direction vector) or a point and a direction vector.

Example - Sketch the line that passes through $\mathrm{P}(5,1)$ and has a direction vector $\vec{d}=(-3,-3)$.

Suppose we have a line ℓ, with point $P_{0}\left(x_{0}, y_{0}\right)$ and direction $\vec{d}=\left(d_{1}, d_{2}\right)$

Now suppose $P(x, y)$ is a general point on ℓ. The point P_{0} has position vector $\overrightarrow{O P_{0}}=\overrightarrow{p_{0}}$ and the point P has position vector $\overrightarrow{O P}=\vec{p}$

We can write $\overrightarrow{P_{0} P}=k \vec{d}$, where $k \in \mathfrak{R}$, so that $k \vec{d}$ is any vector collinear with \vec{d}.

By the triangle law, we have

These equations are called the vector equations of a line in the plane (there are an infinite number of representations). You could use any \vec{d} and any \vec{p}_{0}. The scalar k is called a parameter.

If we equate the components, we get

If we then solve for the parameter, we get the symmetric equation of a line in two space.

$\begin{aligned} & x=x_{0}+k d_{1} \\ & k=\frac{x-x_{0}}{d_{1}} \end{aligned}$	$\begin{aligned} & y=y_{0}+k d_{2} \\ & k=\frac{y-y_{0}}{d_{2}} \end{aligned}$	Now equate $k=k$ $\therefore \frac{x-x_{0}}{d_{1}}=\frac{y-y_{0}}{d_{2}}$

Example - Determine the vector equation for the line that is perpendicular to $\vec{p}=(4,1)+k(-3,2), k \in \mathfrak{R}$, and passes through point $\mathrm{P}(6,5)$.

$$
\{\vec{p}=(6,5)+k(2,3), k \in \mathfrak{R}\}
$$

Definition: A normal vector for a line is a vector $\vec{n}=\left(n_{1}, n_{2}\right)$ which is perpendicular to the line. A line with direction vector $\vec{d}=\left(d_{1}, d_{2}\right)$ has normal $\vec{n}=\left(d_{2},-d_{1}\right)$. And with the anchor and general points:

