Vectors

Vectors vs scalars

An airplane is travelling $500 \mathrm{~km} / \mathrm{h}$... which way?

$\frac{\text { vectors }}{\text { velocity }}$	
weight	
scalars	
force	age
	temperature
	volume

Vectors

$\overrightarrow{A B}$ is a vector that runs from A to B. The size of $\overrightarrow{A B}$ is denoted by $|\overrightarrow{A B}|$
$1 \mathrm{~cm}=100 \mathrm{~km} / \mathrm{h}$

If $\overrightarrow{A B}$ represents an airplane traveling $500 \mathrm{~km} / \mathrm{h}$ in a north easterly direction then $|\overrightarrow{A B}|=5 \mathrm{~cm}=500 \mathrm{~km} / \mathrm{h}$.

The direction of the arrow represents the direction of the airplane, the length is its speed.

Suppose we have

$|\overrightarrow{A B}|=|\overrightarrow{B A}|=500 \mathrm{~km} / \mathrm{h}$
but $\overrightarrow{A B} \neq \overrightarrow{B A}$ because they are in opposite directions. (parallel)
$\overrightarrow{A B}$ and $\overrightarrow{B A}$ are opposite vectors
$\therefore \overrightarrow{A B}=-\overrightarrow{B A}$
$1 \mathrm{~cm}=100 \mathrm{~km} / \mathrm{h}$

Vectors are denoted by their endpoint as in $\overrightarrow{A B}$ or they can take on a name such as \vec{v}.

If we have

$1 \mathrm{~cm}=100 \mathrm{~km} / \mathrm{h}$
If $|\overrightarrow{A B}|=|\overrightarrow{C D}|$ (magnitudes) and
$\overrightarrow{A B} / / \overrightarrow{C D}$ (parallel) and the direction from A to B is the same as from C to D
then $\overrightarrow{A B}=\overrightarrow{C D}$
If two planes are heading East at $400 \mathrm{~km} / \mathrm{h}$, one from Calgary and one from Toronto, they have the same vectors.

On the other hand, if two vectors are parallel but not necessarily with the same magnitude or same direction, they are collinear.

Unit Vector

If we multiply the vector \vec{x} by $\frac{1}{|\vec{x}|}$, then we have $\frac{1}{|\vec{x}|} \vec{x}$, called the unit vector. It has the same direction as \vec{x} but a magnitude of 1 .

Example: Given

Then $\frac{1}{3} \vec{x}$ is the unit vector
$|\vec{x}|=3$

$$
\left|\frac{1}{3} \vec{x}\right|=\frac{1}{3}|\vec{x}|=\frac{1}{3}(3)=1
$$

The unit vector of \vec{x} is written \hat{x}

NESW - direction and Bearings

$E 15^{\circ} \mathrm{N}$
$N 75^{\circ} \mathrm{E}$
Bearing: 75°

W $44^{\circ} \mathrm{S}$
S46 ${ }^{\circ} \mathrm{W}$
Bearing: 226°

Angle Between Two Vectors

Tail to tail: $0 \leq \theta \leq 180^{\circ}$

Geometric Vectors: vectors without reference to coordinate axis.

$10 \mathrm{~km} / \mathrm{h}\left[\mathrm{E} 23^{\circ} \mathrm{S}\right]$

Algebraic Vectors: vectors with reference to coordinate axis.

Consider

$$
\mathrm{A} \longrightarrow \mathrm{~B} \quad \overrightarrow{A B} \text { where }|\overrightarrow{A B}|=2
$$

Suppose the point A is the origin.

If we have $\overrightarrow{A B}$ then $\overrightarrow{A B}$ can be moved until the point A is on the origin and the point B will be at the point $P(a, b)$.

So $\overrightarrow{A B}=\overrightarrow{O P}=(a, b) \sim$ vector from $(0,0)$ to (a, b)

